Development and prospect of near-field optical measurements and characterizations
Jia WANG, Qingyan WANG, Mingqian ZHANG
Development and prospect of near-field optical measurements and characterizations
Scanning near-field optical microscopy (SNOM) is an ideal experimental measuring system in nano-optical measurements and characterizations. Besides microscopy with resolution beyond the diffraction limit, spectroscope with nanometer resolution and other instruments with novel performances have been indispensable for researches in nano-optics and nanophotonics. This paper reviews the developing history of near-field optical (NFO) measuring method and foresees its prospects in future. The development of NFO measurements has gone through four stages, including optical imaging with super resolution, near-field spectroscopy, measurements of nano-optical parameters, and detections of near-field interactions. For every stage, research objectives, technological properties and application fields are discussed.
scanning near-field optical microscopy (SNOM) / near-field optical (NFO) measurement / super-resolution imaging / near-field spectroscopy / nano-optics / nanophotonics
[1] |
Novotny L. The History of Near-field Optics. In: WolfE, ed. Progress in Optics. Amsterdam: Elsevier, 2007, 137–184
|
[2] |
Pohl D W, Denk W, Lanz M. Optical stethoscopy: image recording with resolutio λ/20. Applied Physics Letters, 1984, 44(7): 651–653
CrossRef
Google scholar
|
[3] |
Hao F, Wang R, Wang J. A design methodology for directional beaming control by metal slit-grooves structure. Journal of Optics, 2011, 13(1): 015002
CrossRef
Google scholar
|
[4] |
Hess H F, Betzig E, Harris T D, Pfeiffer L N, West K W. Near-field spectroscopy of the quantum constituents of a luminescent system. Science, 1994, 264(5166): 1740–1745
CrossRef
Pubmed
Google scholar
|
[5] |
Novotny L, Stranick S J. Near-field optical microscopy and spectroscopy with pointed probes. Annual Review of Physical Chemistry, 2006, 57(1): 303–331
CrossRef
Pubmed
Google scholar
|
[6] |
Stöckle R M, Suh Y D, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chemical Physics Letters, 2000, 318(1-3): 131–136
CrossRef
Google scholar
|
[7] |
Hayazawa N, Inouye Y, Sekkat Z, Kawata S. Metallized tip amplification of near-field Raman scattering. Optics Communications, 2000, 183(1-4): 333–336
CrossRef
Google scholar
|
[8] |
Hartschuh A, Sánchez E J, Xie X S, Novotny L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Physical Review Letters, 2003, 90(9): 095503
CrossRef
Pubmed
Google scholar
|
[9] |
Pettinger B, Ren B, Picardi G, Schuster R, Ertl G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Physical Review Letters, 2004, 92(9): 096101
CrossRef
Pubmed
Google scholar
|
[10] |
Wang X, Liu Z, Zhuang M D, Zhang H M, Wang X, Xie Z X, Wu D Y, Ren B, Tian Z Q. Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips. Applied Physics Letters, 2007, 91(10): 101105
CrossRef
Google scholar
|
[11] |
Wang J J, Saito Y, Batchelder D N, Kirkham J, Robinson C, Smith D A. Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy. Applied Physics Letters, 2005, 86(26): 263111
CrossRef
Google scholar
|
[12] |
Höppener C, Novotny L. Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids. Nano Letters, 2008, 8(2): 642–646
CrossRef
Pubmed
Google scholar
|
[13] |
Stanciu C, Sackrow M, Meixner A J. High NA particle- and tip-enhanced nanoscale Raman spectroscopy with a parabolic-mirror microscope. Journal of Microscopy, 2008, 229(2): 247–253
CrossRef
Pubmed
Google scholar
|
[14] |
Steidtner J, Pettinger B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Physical Review Letters, 2008, 100(23): 236101
CrossRef
Pubmed
Google scholar
|
[15] |
Hartschuh A, Qian H, Meixner A J, Anderson N, Novotny L. Nanoscale optical imaging of excitons in single-walled carbon nanotubes. Nano Letters, 2005, 5(11): 2310–2313
CrossRef
Pubmed
Google scholar
|
[16] |
Anderson N, Anger P, Hartschuh A, Novotny L. Subsurface Raman imaging with nanoscale resolution. Nano Letters, 2006, 6(4): 744–749
CrossRef
Pubmed
Google scholar
|
[17] |
Yano T A, Inouye Y, Kawata S. Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra. Nano Letters, 2006, 6(6): 1269–1273
CrossRef
Pubmed
Google scholar
|
[18] |
Anderson N, Hartschuh A, Novotny L. Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. Nano Letters, 2007, 7(3): 577–582
CrossRef
Pubmed
Google scholar
|
[19] |
Bailo E, Deckert V. Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angewandte Chemie International Edition, 2008, 47(9): 1658–1661
CrossRef
Pubmed
Google scholar
|
[20] |
Budich C, Neugebauer U, Popp J, Deckert V. Cell wall investigations utilizing tip-enhanced Raman scattering. Journal of Microscopy, 2008, 229(3): 533–539
CrossRef
Pubmed
Google scholar
|
[21] |
Wu X B, Wang J, Wang R, Xu J Y, Tian Q, Yu J Y. Detection of single-walled carbon nanotube bundles by tip-enhanced Raman spectroscopy. Guang Pu Xue yu Guang Pu Fen Xi, 2009, 29(10): 2681–2685 (in Chinese)
Pubmed
|
[22] |
Diziain S, Adam P M, Bijeon J L, Lamy de la Chapelle M, Royer P. Development of an apertureless near-field optical microscope for fluorescence imaging and spectroscopy. Synthetic Metals, 2003, 139(3): 557–560
CrossRef
Google scholar
|
[23] |
Vobornik D, Banks D S, Lu Z, Fradin C, Taylor R, Johnston L J. Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes. Applied Physics Letters, 2008, 93(16): 163904
CrossRef
Google scholar
|
[24] |
Nabetani Y, Yamasaki M, Miura A, Tamai N. Fluorescence dynamics and morphology of electroluminescent polymer in small domains by time-resolved SNOM. Thin Solid Films, 2001, 393(1-2): 329–333
CrossRef
Google scholar
|
[25] |
Yatsui T, Kawazoe T, Shimizu T, Yamamoto Y, Ueda M, Kourogi M, Ohtsu M, Lee G H. Observation of size-dependent features in the photoluminescence of zinc oxide nanocrystallites by near-field ultraviolet spectroscopy. Applied Physics Letters, 2002, 80(8): 1444–1446
CrossRef
Google scholar
|
[26] |
Stiegler J M, Abate Y, Cvitkovic A, Romanyuk Y E, Huber A J, Leone S R, Hillenbrand R. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy. ACS Nano, 2011, 5(8): 6494–6499
CrossRef
Pubmed
Google scholar
|
[27] |
Yeo B S, Madler S, Schmid T, Zhang W, Zenobi R. Tip-enhanced Raman spectroscopy can see more: the case of cytochrome C. Journal of Physical Chemistry C, 2008, 112(13): 4867–4873
CrossRef
Google scholar
|
[28] |
Zhang D, Heinemeyer U, Stanciu C, Sackrow M, Braun K, Hennemann L E, Wang X, Scholz R, Schreiber F, Meixner A J. Nanoscale spectroscopic imaging of organic semiconductor films by plasmon-polariton coupling. Physical Review Letters, 2010, 104(5): 056601
CrossRef
Pubmed
Google scholar
|
[29] |
Fang Z, Peng Q, Song W, Hao F, Wang J, Nordlander P, Zhu X. Plasmonic focusing in symmetry broken nanocorrals. Nano Letters, 2011, 11(2): 893–897
CrossRef
Pubmed
Google scholar
|
[30] |
Hao F, Wang R, Wang J. A design method for a micron-focusing plasmonic lens based on phase modulation. Plasmonics, 2010, 5(4): 405–409
CrossRef
Google scholar
|
[31] |
Hao F, Wang R, Wang J. A novel design method of focusing-control device by modulating SPPs scattering. Plasmonics, 2010, 5(1): 45–49
CrossRef
Google scholar
|
[32] |
Hao F, Wang R, Wang J. Design and characterization of a micron-focusing plasmonic device. Optics Express, 2010, 18(15): 15741–15746
CrossRef
Pubmed
Google scholar
|
[33] |
Hao F, Wang R, Wang J. Focusing control based on SPPs-scattering modulation. Journal of Nonlinear Optical Physics & Materials, 2010, 19(4): 535–541
CrossRef
Google scholar
|
[34] |
Nesci A.Measuring Amplitude and Phase in Optical Fields with Sub-Wavelength Features. Neuchatel: University of Neuchatel, 2001
|
[35] |
Schnell M, García-Etxarri A, Huber A J, Crozier K, Aizpurua J, Hillenbrand R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nature Photonics, 2009, 3(5): 287–291
CrossRef
Google scholar
|
[36] |
Schnell M, Garcia-Etxarri A, Huber A J, Crozier K B, Borisov A, Aizpurua J, Hillenbrand R. Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy. Journal of Physical Chemistry C, 2010, 114(16): 7341–7345
CrossRef
Google scholar
|
[37] |
Blaize S, Bérenguier B, Stéfanon I, Bruyant A, Lérondel G, Royer P, Hugon O, Jacquin O, Lacot E. Phase sensitive optical near-field mapping using frequency-shifted laser optical feedback interferometry. Optics Express, 2008, 16(16): 11718–11726
CrossRef
Pubmed
Google scholar
|
[38] |
Schnell M, Garcia-Etxarri A, Alkorta J, Aizpurua J, Hillenbrand R. Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. Nano Letters, 2010, 10(9): 3524–3528
CrossRef
Pubmed
Google scholar
|
[39] |
Gersen H, Novotny L, Kuipers L, van Hulst N F. On the concept of imaging nanoscale vector fields. Nature Photonics, 2007, 1(5): 242
CrossRef
Google scholar
|
[40] |
Lee K G, Kihm H W, Kihm J E, Choi W J, Kim H, Ropers C, Park D J, Yoon Y C, Choi S B, Woo D H, Kim J, Lee B, Park Q H, Lienau C, Kim D S. Vector field microscopic imaging of light. Nature Photonics, 2007, 1(1): 53–56
CrossRef
Google scholar
|
[41] |
Lee K G, Kihm H W, Ahn K J, Ahn J S, Suh Y D, Lienau C, Kim D S. Vector field mapping of local polarization using gold nanoparticle functionalized tips: independence of the tip shape. Optics Express, 2007, 15(23): 14993–15001
CrossRef
Pubmed
Google scholar
|
[42] |
Burresi M, van Oosten D, Kampfrath T, Schoenmaker H, Heideman R, Leinse A, Kuipers L. Probing the magnetic field of light at optical frequencies. Science, 2009, 326(5952): 550–553
CrossRef
Pubmed
Google scholar
|
[43] |
Fischer U C, Pohl D W. Observation of single-particle plasmons by near-field optical microscopy. Physical Review Letters, 1989, 62(4): 458–461
CrossRef
Pubmed
Google scholar
|
[44] |
Novotny L, Bian R X, Xie X S. Theory of nanometric optical tweezers. Physical Review Letters, 1997, 79(4): 645–648
CrossRef
Google scholar
|
[45] |
Robert D G, Robert J S, Daniel E P. Optical antenna: towards a unity efficiency near-field optical probe. Applied Physics Letters, 1997, 70(11): 1354–1356
CrossRef
Google scholar
|
[46] |
Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner W E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photonics, 2009, 3(11): 654–657
CrossRef
Google scholar
|
[47] |
Taminiau T H, Moerland R J, Segerink F B, Kuipers L, van Hulst N F. λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Letters, 2007, 7(1): 28–33
CrossRef
Pubmed
Google scholar
|
[48] |
Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Physical Review Letters, 2006, 96(11): 113002
CrossRef
Pubmed
Google scholar
|
[49] |
Novotny L. From near-field optics to optical antennas. Physics Today, 2011, 64(7): 47–52
CrossRef
Google scholar
|
[50] |
Mühlschlegel P, Eisler H J, Martin O J, Hecht B, Pohl D W. Resonant optical antennas. Science, 2005, 308(5728): 1607–1609
CrossRef
Pubmed
Google scholar
|
[51] |
Biagioni P, Huang J S, Duò L, Finazzi M, Hecht B. Cross resonant optical antenna. Physical Review Letters, 2009, 102(25): 256801
CrossRef
Pubmed
Google scholar
|
[52] |
Olmon R L, Krenz P M, Jones A C, Boreman G D, Raschke M B. Near-field imaging of optical antenna modes in the mid-infrared. Optics Express, 2008, 16(25): 20295–20305
CrossRef
Pubmed
Google scholar
|
[53] |
Bouhelier A, Beversluis M R, Novotny L. Characterization of nanoplasmonic structures by locally excited photoluminescence. Applied Physics Letters, 2003, 83(24): 5041–5043
CrossRef
Google scholar
|
[54] |
Burresi M, Diessel D, van Oosten D, Linden S, Wegener M, Kuipers L. Negative-index metamaterials: looking into the unit cell. Nano Letters, 2010, 10(7): 2480–2483
CrossRef
Pubmed
Google scholar
|
[55] |
Zentgraf T, Dorfmüller J, Rockstuhl C, Etrich C, Vogelgesang R, Kern K, Pertsch T, Lederer F, Giessen H. Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials. Optics Letters, 2008, 33(8): 848–850
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |