A simple infrared nanosensor array based on carbon nanoparticles

Junjie DAI, Longyan YUAN, Qize ZHONG, Fengchao ZHANG, Hongfei CHEN, Chao YOU, Xiaohong FAN, Bin HU, Jun ZHOU

PDF(272 KB)
PDF(272 KB)
Front. Optoelectron. ›› 2012, Vol. 5 ›› Issue (3) : 266-270. DOI: 10.1007/s12200-012-0253-2
RESEARCH ARTICLE
RESEARCH ARTICLE

A simple infrared nanosensor array based on carbon nanoparticles

Author information +
History +

Abstract

A simple (2×2) pixelated flexible infrared nanosensor array based on carbon nanoparticles (CNPs) was fabricated through a simple and low-cost flame method. By integrated with a micro controller unit, the sensor array could detect power density of incident infrared light in real-time. The mechanism for the superior infrared sensing property of the flexible sensor array based on CNP was also studied in detail in this work.

Keywords

carbon nanoparticles (CNPs) / infrared sensor / array

Cite this article

Download citation ▾
Junjie DAI, Longyan YUAN, Qize ZHONG, Fengchao ZHANG, Hongfei CHEN, Chao YOU, Xiaohong FAN, Bin HU, Jun ZHOU. A simple infrared nanosensor array based on carbon nanoparticles. Front Optoelec, 2012, 5(3): 266‒270 https://doi.org/10.1007/s12200-012-0253-2

References

[1]
Takei K, Takahashi T, Ho J C, Ko H, Gillies A G, Leu P W, Fearing R S, Javey A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Materials, 2010, 9(10): 821–826
CrossRef Pubmed Google scholar
[2]
Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T. A rubberlike stretchable active matrix using elastic conductors. Science, 2008, 321(5895): 1468–1472
CrossRef Pubmed Google scholar
[3]
Ko H C, Stoykovich M P, Song J Z, Malyarchuk V, Choi W M, Yu C J, Geddes J B 3rd, Xiao J L, Wang S D, Huang Y G, Rogers J A. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454(7205): 748–753
CrossRef Pubmed Google scholar
[4]
Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T, Someya T. Organic nonvolatile memory transistors for flexible sensor arrays. Science, 2009, 326(5959): 1516–1519
CrossRef Pubmed Google scholar
[5]
Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba D N, Hata K. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology, 2011, 6(5): 296–301
CrossRef Pubmed Google scholar
[6]
Yuan L Y, Dai J J, Fan X H, Song T, Tao Y T, Wang K, Xu Z, Zhang J, Bai X D, Lu P X, Chen J, Zhou J, Wang Z L. Self-cleaning flexible infrared nanosensor based on carbon nanoparticles. ACS Nano, 2011, 5(5): 4007–4013
CrossRef Pubmed Google scholar
[7]
Xiao X, Yuan L, Zhong J, Ding T, Liu Y, Cai Z, Rong Y, Han H, Zhou J, Wang Z L. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Advanced Materials (Deerfield Beach, Fla.), 2011, 23(45): 5440–5444
CrossRef Pubmed Google scholar
[8]
Yuan L Y, Tao Y T, Chen J, Dai J J, Song T, Ruan M Y, Ma Z W, Gong L, Liu K, Zhang X H, Hu X J, Zhou J, Wang Z L. Carbon nanoparticles on carbon fabric for flexible and high-performance field emitters. Advanced Functional Materials, 2011, 21(11): 2150–2154
CrossRef Google scholar
[9]
McDonald S A, Konstantatos G, Zhang S G, Cyr P W, Klem E J D, Levina L, Sargent E H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials, 2005, 4(2): 138–142
CrossRef Pubmed Google scholar
[10]
Johnston K W, Pattantyus-Abraham A G, Clifford J P, Myrskog S H, MacNeil D D, Levina L, Sargent E H. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Applied Physics Letters, 2008, 92(15): 151115
CrossRef Google scholar
[11]
Klem E J D, MacNeil D D, Levina L, Sargent E H. Solution processed photovoltaic devices with 2% infrared monochromatic power conversion efficiency: performance optimization and oxide formation. Advanced Materials (Deerfield Beach, Fla.), 2008, 20(18): 3433–3439
CrossRef Google scholar
[12]
Xiao L, Zhang Y Y, Wang Y, Liu K, Wang Z, Li T Y, Jiang Z, Shi J P, Liu L A, Li Q Q, Zhao Y G, Feng Z H, Fan S S, Jiang K L. A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films. Nanotechnology, 2011, 22(2): 025502
CrossRef Pubmed Google scholar
[13]
Rauch T, Boberl M, Tedde S F, Furst J, Kovalenko M V, Hesser G N, Lemmer U, Heiss W, Hayden O. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nature Photonics, 2009, 3(6): 332–336
CrossRef Google scholar
[14]
Schödel R, Ott T, Genzel R, Hofmann R, Lehnert M, Eckart A, Mouawad N, Alexander T, Reid M J, Lenzen R, Hartung M, Lacombe F, Rouan D, Gendron E, Rousset G, Lagrange A M, Brandner W, Ageorges N, Lidman C, Moorwood A F M, Spyromilio J, Hubin N, Menten K M. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature, 2002, 419(6908): 694–696
CrossRef Pubmed Google scholar
[15]
Xu F L, Liu X, Fujimura K. Pedestrian detection and tracking with night vision. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(1): 63–71
CrossRef Google scholar
[16]
Bachilo S M, Strano M S, Kittrell C, Hauge R H, Smalley R E, Weisman R B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002, 298(5602): 2361–2366
CrossRef Pubmed Google scholar
[17]
Freitag M, Martin Y, Misewich J A, Martel R, Avouris P H. Photoconductivity of single carbon nanotubes. Nano Letters, 2003, 3(8): 1067–1071
CrossRef Google scholar
[18]
Itkis M E, Borondics F, Yu A P, Haddon R C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 2006, 312(5772): 413–416
CrossRef Pubmed Google scholar
[19]
Pradhan B, Setyowati K, Liu H Y, Waldeck D H, Chen J. Carbon nanotube-polymer nanocomposite infrared sensor. Nano Letters, 2008, 8(4): 1142–1146
CrossRef Pubmed Google scholar
[20]
Liu H P, Ye T, Mao C D. Fluorescent carbon nanoparticles derived from candle soot. Angewandte Chemie International Edition, 2007, 46(34): 6473–6475
CrossRef Pubmed Google scholar
[21]
Yang S T, Cao L, Luo P G J, Lu F S, Wang X, Wang H F, Meziani M J, Liu Y F, Qi G, Sun Y P. Carbon dots for optical imaging in vivo. Journal of the American Chemical Society, 2009, 131(32): 11308–11309
CrossRef Pubmed Google scholar
[22]
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401
CrossRef Pubmed Google scholar
[23]
Pimenta M A, Dresselhaus G, Dresselhaus M S, Cançado L G, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 2007, 9(11): 1276–1291
CrossRef Pubmed Google scholar

Acknowledgements

J. Zhou thanks for the financial support of the project from the National Natural Science Foundation of China (Grant No. 51002056), the National Basic Research Program of China (No. 2012CB619302), the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (No. 201035), the Program for New Century Excellent Talents in University (NCET-10-0397). L. Y. Yuan thanks the support from the China Postdoctoral Science Foundation (No. 20100480892). J. J. Dai thanks the support from the graduate innovation fund of Huazhong University of Science and Technology (HF-09-19-2011-230). The authors thank the Analysis and Testing Center of Huazhong University of Science and Technology for support.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(272 KB)

Accesses

Citations

Detail

Sections
Recommended

/