
A simple infrared nanosensor array based on carbon nanoparticles
Junjie DAI, Longyan YUAN, Qize ZHONG, Fengchao ZHANG, Hongfei CHEN, Chao YOU, Xiaohong FAN, Bin HU, Jun ZHOU
Front. Optoelectron. ›› 2012, Vol. 5 ›› Issue (3) : 266-270.
A simple infrared nanosensor array based on carbon nanoparticles
A simple (2×2) pixelated flexible infrared nanosensor array based on carbon nanoparticles (CNPs) was fabricated through a simple and low-cost flame method. By integrated with a micro controller unit, the sensor array could detect power density of incident infrared light in real-time. The mechanism for the superior infrared sensing property of the flexible sensor array based on CNP was also studied in detail in this work.
carbon nanoparticles (CNPs) / infrared sensor / array
[1] |
Takei K, Takahashi T, Ho J C, Ko H, Gillies A G, Leu P W, Fearing R S, Javey A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Materials, 2010, 9(10): 821–826
CrossRef
Pubmed
Google scholar
|
[2] |
Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T. A rubberlike stretchable active matrix using elastic conductors. Science, 2008, 321(5895): 1468–1472
CrossRef
Pubmed
Google scholar
|
[3] |
Ko H C, Stoykovich M P, Song J Z, Malyarchuk V, Choi W M, Yu C J, Geddes J B 3rd, Xiao J L, Wang S D, Huang Y G, Rogers J A. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454(7205): 748–753
CrossRef
Pubmed
Google scholar
|
[4] |
Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T, Someya T. Organic nonvolatile memory transistors for flexible sensor arrays. Science, 2009, 326(5959): 1516–1519
CrossRef
Pubmed
Google scholar
|
[5] |
Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba D N, Hata K. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology, 2011, 6(5): 296–301
CrossRef
Pubmed
Google scholar
|
[6] |
Yuan L Y, Dai J J, Fan X H, Song T, Tao Y T, Wang K, Xu Z, Zhang J, Bai X D, Lu P X, Chen J, Zhou J, Wang Z L. Self-cleaning flexible infrared nanosensor based on carbon nanoparticles. ACS Nano, 2011, 5(5): 4007–4013
CrossRef
Pubmed
Google scholar
|
[7] |
Xiao X, Yuan L, Zhong J, Ding T, Liu Y, Cai Z, Rong Y, Han H, Zhou J, Wang Z L. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Advanced Materials (Deerfield Beach, Fla.), 2011, 23(45): 5440–5444
CrossRef
Pubmed
Google scholar
|
[8] |
Yuan L Y, Tao Y T, Chen J, Dai J J, Song T, Ruan M Y, Ma Z W, Gong L, Liu K, Zhang X H, Hu X J, Zhou J, Wang Z L. Carbon nanoparticles on carbon fabric for flexible and high-performance field emitters. Advanced Functional Materials, 2011, 21(11): 2150–2154
CrossRef
Google scholar
|
[9] |
McDonald S A, Konstantatos G, Zhang S G, Cyr P W, Klem E J D, Levina L, Sargent E H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials, 2005, 4(2): 138–142
CrossRef
Pubmed
Google scholar
|
[10] |
Johnston K W, Pattantyus-Abraham A G, Clifford J P, Myrskog S H, MacNeil D D, Levina L, Sargent E H. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Applied Physics Letters, 2008, 92(15): 151115
CrossRef
Google scholar
|
[11] |
Klem E J D, MacNeil D D, Levina L, Sargent E H. Solution processed photovoltaic devices with 2% infrared monochromatic power conversion efficiency: performance optimization and oxide formation. Advanced Materials (Deerfield Beach, Fla.), 2008, 20(18): 3433–3439
CrossRef
Google scholar
|
[12] |
Xiao L, Zhang Y Y, Wang Y, Liu K, Wang Z, Li T Y, Jiang Z, Shi J P, Liu L A, Li Q Q, Zhao Y G, Feng Z H, Fan S S, Jiang K L. A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films. Nanotechnology, 2011, 22(2): 025502
CrossRef
Pubmed
Google scholar
|
[13] |
Rauch T, Boberl M, Tedde S F, Furst J, Kovalenko M V, Hesser G N, Lemmer U, Heiss W, Hayden O. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nature Photonics, 2009, 3(6): 332–336
CrossRef
Google scholar
|
[14] |
Schödel R, Ott T, Genzel R, Hofmann R, Lehnert M, Eckart A, Mouawad N, Alexander T, Reid M J, Lenzen R, Hartung M, Lacombe F, Rouan D, Gendron E, Rousset G, Lagrange A M, Brandner W, Ageorges N, Lidman C, Moorwood A F M, Spyromilio J, Hubin N, Menten K M. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature, 2002, 419(6908): 694–696
CrossRef
Pubmed
Google scholar
|
[15] |
Xu F L, Liu X, Fujimura K. Pedestrian detection and tracking with night vision. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(1): 63–71
CrossRef
Google scholar
|
[16] |
Bachilo S M, Strano M S, Kittrell C, Hauge R H, Smalley R E, Weisman R B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002, 298(5602): 2361–2366
CrossRef
Pubmed
Google scholar
|
[17] |
Freitag M, Martin Y, Misewich J A, Martel R, Avouris P H. Photoconductivity of single carbon nanotubes. Nano Letters, 2003, 3(8): 1067–1071
CrossRef
Google scholar
|
[18] |
Itkis M E, Borondics F, Yu A P, Haddon R C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 2006, 312(5772): 413–416
CrossRef
Pubmed
Google scholar
|
[19] |
Pradhan B, Setyowati K, Liu H Y, Waldeck D H, Chen J. Carbon nanotube-polymer nanocomposite infrared sensor. Nano Letters, 2008, 8(4): 1142–1146
CrossRef
Pubmed
Google scholar
|
[20] |
Liu H P, Ye T, Mao C D. Fluorescent carbon nanoparticles derived from candle soot. Angewandte Chemie International Edition, 2007, 46(34): 6473–6475
CrossRef
Pubmed
Google scholar
|
[21] |
Yang S T, Cao L, Luo P G J, Lu F S, Wang X, Wang H F, Meziani M J, Liu Y F, Qi G, Sun Y P. Carbon dots for optical imaging in vivo. Journal of the American Chemical Society, 2009, 131(32): 11308–11309
CrossRef
Pubmed
Google scholar
|
[22] |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401
CrossRef
Pubmed
Google scholar
|
[23] |
Pimenta M A, Dresselhaus G, Dresselhaus M S, Cançado L G, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 2007, 9(11): 1276–1291
CrossRef
Pubmed
Google scholar
|
/
〈 |
|
〉 |