Vertical-external-cavity surface-emitting lasers and quantum dot lasers

Guangcun SHAN, Xinghai ZHAO, Mingjun HU, Chan-Hung SHEK, Wei HUANG

PDF(380 KB)
PDF(380 KB)
Front. Optoelectron. ›› 2012, Vol. 5 ›› Issue (2) : 157-170. DOI: 10.1007/s12200-012-0237-2
REVIEW ARTICLE
REVIEW ARTICLE

Vertical-external-cavity surface-emitting lasers and quantum dot lasers

Author information +
History +

Abstract

The use of cavity to manipulate photon emission of quantum dots (QDs) has been opening unprecedented opportunities for realizing quantum functional nanophotonic devices and quantum information devices. In particular, in the field of semiconductor lasers, QDs were introduced as a superior alternative to quantum wells (QWs) to suppress the temperature dependence of the threshold current in vertical-external-cavity surface-emitting lasers (VECSELs). In this work, a review of properties and development of semiconductor VECSEL devices and QD laser devices is given. Based on the features of VECSEL devices, the main emphasis is put on the recent development of technological approach on semiconductor QD VECSELs. Then, from the viewpoint of both single QD nanolaser and cavity quantum electrodynamics (QED), a single-QD-cavity system resulting from the strong coupling of QD cavity is presented. In this review, we will cover both fundamental aspects and technological approaches of QD VECSEL devices. Lastly, the presented review here has provided deep insight into useful guideline for the development of QD VECSEL technology, future quantum functional nanophotonic devices and monolithic photonic integrated circuits (MPhICs).

Keywords

vertical-external-cavity surface-emitting lasers (VECSELs) / quantum dot (QD) / QD laser / quantum electrodynamics (QED) / cavity QED

Cite this article

Download citation ▾
Guangcun SHAN, Xinghai ZHAO, Mingjun HU, Chan-Hung SHEK, Wei HUANG. Vertical-external-cavity surface-emitting lasers and quantum dot lasers. Front Optoelec, 2012, 5(2): 157‒170 https://doi.org/10.1007/s12200-012-0237-2

References

[1]
Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L, Hu E, Imamoglu A. A quantum dot single-photon turnstile device. Science, 2000, 290(5500): 2282–2285
CrossRef Pubmed Google scholar
[2]
Fonoberov V A, Balandin A A. ZnO quantum dots: physical properties and optoelectronic applications. Journal of Nanoelectronics and Optoelectronics, 2006, 1(1): 19–38
[3]
Kumano H, Kimura S, Endo M, Sasakura H, Adachi S, Muto S, Suemune I. Deterministic single-photon and polarization-correlated photon pair generations from a single InAlAs quantum dot. Journal of Nanoelectronics and Optoelectronics, 2006, 1(1): 39–51
[4]
Gerard J M, Gayral B. InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics. Physica E, Low-Dimensional Systems and Nanostructures, 2001, 9(1): 131–139
CrossRef Google scholar
[5]
Fathpour S, Mi Z, Bhattacharya P. High-speed quantum dot lasers. Journal of Physics D, 2005, 38(13): 2103–2111
CrossRef Google scholar
[6]
Okhotnikov O G. Seminconductor Disk Laser. Berlin: Wiley-VCH Verlag, 2010
[7]
Vallaitis T, Koos C, Bonk R, Freude W, Laemmlin M, Meuer C, Bimberg D, Leuthold J. Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Optics Express, 2008, 16(1): 170–178
CrossRef Pubmed Google scholar
[8]
Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715
CrossRef Google scholar
[9]
He Y, Lu H T, Sai L M, Lai W Y, Fan Q L, Wang L H, Huang W. Synthesis of CdTe nanocrystals through program process of microwave irradiation. Journal of Physical Chemistry B, 2006, 110(27): 13352–13356
CrossRef Google scholar
[10]
Shan G, Bao S, Shek C H, Huang W. Theoretical study of fluorescence resonant energy transfer dynamics in individual semiconductor nanocrystal-DNA-dye conjugates. Journal of Luminescence, 2012, 132(6): 1472–1476
CrossRef Google scholar
[11]
Kuznetsov M, Hakimi F, Sprague R, Mooradian A. Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams. IEEE Journal on Selected Topics in Quantum Electronics, 1999, 5(3): 561–573
CrossRef Google scholar
[12]
Rantamäki A, Sirbu A, Mereuta A, Kapon E, Okhotnikov O G. 3 W of 650 nm red emission by frequency doubling of wafer-fused semiconductor disk laser. Optics Express, 2010, 18(21): 21645–21650
CrossRef Pubmed Google scholar
[13]
Albrecht A R, Hains C P, Rotter T J, Stintz A, Malloy K J, Balakrishnan G, Moloney J V. High power 1.25 μm InAs quantum dot vertical external-cavity surface-emitting laser. Journal of Vacuum Science & Technology B, 2011, 9(3): 03C113
[14]
Coldren L A, Corzine S W. Diode Lasers and Photonic Integrated Circuits. New York: John Wiley & Sons, 1995
[15]
Li H, Iga K. Vertical-Cavity Surface-Emitting Laser Devices. Berlin: Springer, 2002
[16]
Diehl R. High Power Diode Lasers. Berlin: Springer, 2000
[17]
Lutgen S, Albrecht T, Brick P, Reill W, Luft J, Späth W. 8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm. Applied Physics Letters, 2003, 82(21): 3620
CrossRef Google scholar
[18]
Kapon E. Semiconductor Lasers II: Materials and Structures. New York: Academic Press, 1999
[19]
Chilla J, Shu Q Z, Zhou H, Weiss E, Reed M, Spinelli L. Recent advances in optically pumped semiconductor lasers. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2007, 6451: 645109
[20]
Keller U, Tropper A C. Passively modelocked surface-emitting semiconductor lasers. Physics Reports, 2006, 429(2): 67–120
CrossRef Google scholar
[21]
Saarinen E J, Härkönen A, Suomalainen S, Okhotnikov O G. Power scalable semiconductor disk laser using multiple gain cavity. Optics Express, 2006, 14(26): 12868–12871
CrossRef Pubmed Google scholar
[22]
Fan L, Fallahi M, Hader J, Zakharian A R, Moloney J V, Murray J T, Bedford R, Stolz W, Koch S W. Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme. Optics Letters, 2006, 31(24): 3612–3614
CrossRef Pubmed Google scholar
[23]
Fan L, Fallahi M, Zakharian A, Hader J, Moloney J V, Bedford R, Murray J T, Stolz W, Koch S W. Extended tunability in a two-chip VECSEL. IEEE Photonics Technology Letters, 2007, 19(8): 544–546
CrossRef Google scholar
[24]
Rautiainen J, Härkönen A, Korpijärvi V M, Tuomisto P, Guina M, Okhotnikov O G. 2.7 W tunable orange-red GaInNAs semiconductor disk laser. Optics Express, 2007, 15(26): 18345–18350
CrossRef Pubmed Google scholar
[25]
Hilbich S, Seelert W, Ostroumov V, Kannengiesser C, Elm R v, Mueller J, Weiss E, Zhou H, Chilla J. New wavelengths in the yellow orange range between 545 nm and 580 nm generated by an intracavity frequency-doubled optically pumped semiconductor laser. Proceedings of SPIE, 2007, 6451: 64510C
[26]
Fallahi M, Fan L, Kaneda Y, Hessenius C, Hader J, Li H, Moloney J V, Kunert B, Stolz W, Koch S W, Murray J, Bedford R. 5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser. IEEE Photonics Technology Letters, 2008, 20(20): 1700–1702
CrossRef Google scholar
[27]
Giet S, Sun H D, Calvez S, Dawson M D, Suomalainen S, Harkonen A, Guina M, Okhotnikov O, Pesa M. Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume Bragg grating. IEEE Photonics Technology Letters, 2006, 18(16): 1786–1788
CrossRef Google scholar
[28]
Giet S, Lee C L, Calvez S, Dawson M D, Destouches N, Pommier J C, Parriaux O. Stabilization of a semiconductor disk laser using an intra-cavity high reflectivity grating. Optics Express, 2007, 15(25): 16520–16526
CrossRef Pubmed Google scholar
[29]
Fan L, Fallahi M, Murray J T, Bedford R, Kaneda Y, Zakharian A R, Hader J, Moloney J V, Stolz W, Koch S W. Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers. Applied Physics Letters, 2006, 88(2): 021105
CrossRef Google scholar
[30]
Lorenser D, Maas D, Unold H J, Bellancourt A R, Rudin B, Gini E, Ebling D, Keller U. 50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power. IEEE Journal of Quantum Electronics, 2006, 42(8): 838–847
CrossRef Google scholar
[31]
Haring R, Paschotta R, Aschwanden A, Gini E, Morier-Genoud F, Keller U. High-power passively mode-locked semiconductor lasers. IEEE Journal of Quantum Electronics, 2002, 38(9): 1268–1275
CrossRef Google scholar
[32]
Alford W J, Raymond T D, Allerman A A. High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser. Journal of the Optical Society of America B: Optical Physics, 2002, 19(4): 663–666
CrossRef Google scholar
[33]
Hastie J E, Hopkins J M, Calvez S, Jeon C W, Burns D, Abram R, Riis E, Ferguson A I, Dawson M D. 0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser. IEEE Photonics Technology Letters, 2003, 15(7): 894–896
CrossRef Google scholar
[34]
Hastie J E, Morton L G, Calvez S, Dawson M D, Leinonen T, Pessa M, Gibson G, Padgett M J. Red microchip VECSEL array. Optics Express, 2005, 13(18): 7209–7214
CrossRef Pubmed Google scholar
[35]
Kemp A J, Maclean A J, Hastie J E, Smith S A, Hopkins J M, Calvez S, Valentine G J, Dawson M D, Burns D. Thermal lensing, thermal management and transverse mode control in microchip VECSELs. Applied Physics B: Lasers and Optics, 2006, 83(2): 189–194
CrossRef Google scholar
[36]
Garnache A, Kachanov A A, Stoeckel F, Planel R. High-sensitivity intracavity laser absorption spectroscopy with vertical-external-cavity surface-emitting semiconductor lasers. Optics Letters, 1999, 24(12): 826–828
CrossRef Pubmed Google scholar
[37]
Zhao X H, Zhao X, Shan G C, Gao Y. Fiber-coupled laser-driven flyer plates system. Review of Scientific Instruments, 2011, 82(4): 043904
CrossRef Pubmed Google scholar
[38]
Dingle R, Henry C H. Quantum effects in heterostructure lasers. <patent>US Patent, 3 982 207</patent>, 1976
[39]
Shan G C, Bao S Y. Theoretical study of a quantum dot microcavity laser. Proceedings of the SPIE, 2007, 6279: 627925
[40]
Bimberg D, Kirstaedter N, Ledentsov N N, Alferov Zh I, Kopev P S, Ustinov V M. InGaAs-GaAs quantum-dot lasers. IEEE Journal on Selected Topics in Quantum Electronics, 1997, 3(2): 196–205
CrossRef Google scholar
[41]
Asada M, Miyamoto Y, Suematsu Y. Gain and the threshold of three-dimensional quantum-box lasers. IEEE Journal of Quantum Electronics, 1986, QE-22(9): 1915–1921
CrossRef Google scholar
[42]
Kirstaedter N, Schmidt O G, Ledentsov N N, Bimberg D, Ustinov V M, Egorov A Yu, Zhukov A E, Maximov M V, Kopev P S, Alferov Zh I. Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers. Applied Physics Letters, 1996, 69(9): 1226
CrossRef Google scholar
[43]
Jiang H, Singh J. Nonequilibrium distribution in quantum dots lasers and influence on laser spectral output. Journal of Applied Physics, 1999, 85(10): 7438
CrossRef Google scholar
[44]
Leonard D, Pond K, Petroff P M. Critical layer thickness for self-assembled InAs islands on GaAs. Physical Review B: Condensed Matter and Materials Physics, 1994, 50(16): 11687–11692
CrossRef Google scholar
[45]
Bester G, Wu X, Vanderbilt D, Zunger A. Importance of second-order piezoelectric effects in zinc-blende semiconductors. Physical Review Letters, 2006, 96(18): 187602
CrossRef Pubmed Google scholar
[46]
Schliwa A, Winkelnkemper M, Bimberg D. Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As∕GaAs quantum dots. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(20): 205324
CrossRef Google scholar
[47]
Schliwa A, Winkelnkemper M, Bimberg D. Few-particle energies versus geometry and composition of InxGa1-xAs/GaAs self-organized quantum dots. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(7): 075443
CrossRef Google scholar
[48]
Vallaitis T, Koos C, Bonk R, Freude W, Laemmlin M, Meuer C, Bimberg D, Leuthold J. Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Optics Express, 2008, 16(1): 170–178
CrossRef Pubmed Google scholar
[49]
Blokhin S A, Maleev N A, Kuzmenkov A G, Sakharov A V, Kulagina M M, Shernyakov Yu M, Novikov I I, Maximov M V, Ustinov V M, Kovsh A R, Mikhrin S S, Ledentsov N N, Lin G, Chi J Y. Vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots. IEEE Journal of Quantum Electronics, 2006, 42(9): 851–858
CrossRef Google scholar
[50]
Mutig A, Fiol G, Moser P, Arsenijevic D, Shchukin V A, Ledentsov N N, Mikhrin S S, Krestnikov I L, Livshits D L, Kovsh A R, Hopfer F, Bimberg D. 120°C 20 Gbit/s operation of 980 nm VCSEL. Electronics Letters, 2008, 44(22): 1305–1306
CrossRef Google scholar
[51]
Sellin R L, Kaiander I, Ouyang D, Kettler T, Pohl U W, Bimberg D, Zakharov N D, Werner P. Alternative-precursor metalorganic chemical vapor deposition of self-organized InGaAs/GaAs quantum dots and quantum-dot lasers. Applied Physics Letters, 2003, 82(6): 841
CrossRef Google scholar
[52]
Sellers I R, Liu H Y, Groom K M, Childs D T, Robbins D, Badcock T J, Hopkinson M, Mowbray D J, Skolnick M S. 1.3 μm InAs∕GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density. Electronics Letters, 2004, 40(22): 1412–1413
CrossRef Google scholar
[53]
Xu Z, Birkedal D, Juhl M, Hvam J. Submonolayer InGaAs∕GaAs quantum-dot lasers with high modal gain and zero-linewidth enhancement factor. Applied Physics Letters, 2004, 85(15): 3259
CrossRef Google scholar
[54]
Mikhrin S S, Zhukov A E, Kovsh A R, Maleev N A, Ustinov V M, Shernyakov Yu M, Soshnikov I P, Livshits D L, Tarasov I S, Bedarev D A, Volovik B V, Maximov V M, Tsatsulnikov A F, Ledentsov N N, Kopev P S, Bimberg D, Alferov Zh I. 0.94 µm diode lasers based on Stranski-Krastanow and sub-monolayer quantum dots. Semiconductor Science and Technology, 2000, 15(11): 1061–1064
CrossRef Google scholar
[55]
Vahala K J. Quantum box fabrication tolerance and size limits in semiconductors and their effect on optical gain. IEEE Journal of Quantum Electronics, 1988, 24(3): 523–530
CrossRef Google scholar
[56]
Kirstaedter N, Ledentsov N N, Grundmann M, Bimberg D, Ustinov V M, Ruvimov S S, Maximov M V, Kopev P S, Alferov Zh I, Richter U, Werner P, Gosele U, Heydenreich J. Low threshold, large T0 injection laser emission from (InGa)As quantum dots. Electronics Letters, 1994, 30(17): 1416–1417
CrossRef Google scholar
[57]
Marko I P, Andreev A D, Adams A R, Krebs R, Reithmeier J, Forchel A. Importance of Auger recombination in InAs 1.3 μm quantum dot lasers. Electronics Letters, 2003, 39(1): 58
CrossRef Google scholar
[58]
Shchekin O B, Deppe D G. Low-threshold high-T0/1.3-μm InAs quantum-dot lasers due to p-type modulation doping of the active region. IEEE Photonics Technology Letters, 2002, 14(9): 1231–1233
CrossRef Google scholar
[59]
Heinrichsdorff F, Mao M H, Kirstaedter N, Krost A, Bimberg D, Kosogov A O, Werner P. Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition. Applied Physics Letters, 1997, 71(1): 22
CrossRef Google scholar
[60]
Maximov M V, Kochnev I V, Shernyakov Y M, Zaitsev S V, Gordeev N Yu, Tsatsulnikov A F, Sakharov A V, Krestnikov I L, Kopev P S, Alferov Zh I, Ledentsov N N, Bimberg D, Kosogov A O, Werner P, Gösele U. InGaAs/GaAs quantum dot lasers with ultrahigh characteristic temperature (T0 = 385 K ) grown by metal organic chemical vapour deposition. Japanese Journal of Applied Physics, 1997, 36(Part 1, No. 6B): 4221–4223
CrossRef Google scholar
[61]
Sellin R L, Heinrichsdorff F, Ribbat Ch, Grundmann M, Pohl U W, Bimberg D. Surface flattening during MOCVD of thin GaAs layers covering InGaAs quantum dots. Journal of Crystal Growth, 2000, 221(1–4): 581–585
CrossRef Google scholar
[62]
Ribbat Ch, Sellin R L, Kaiander I, Hopfer F, Ledentsov N N, Bimberg D, Kovsh A R, Ustinov V M, Zhukov A E, Maximov M V. Complete suppression of filamentation and superior beam quality in quantum-dot lasers. Applied Physics Letters, 2003, 82(6): 952
CrossRef Google scholar
[63]
Ouyang D, Ledentsov N N, Bognar S, Hopfer F, Sellin R L, Kaiander I, Bimberg D. Impact of the mesa etching profiles on the spectral hole burning effects in quantum dot lasers. Semiconductor Science and Technology, 2004, 19(5): L43–L47
CrossRef Google scholar
[64]
Strittmatter A, Germann T D, Kettler Th, Posilovic K, Pohl U W, Bimberg D. Alternative precursor metal-organic chemical vapor deposition of InGaAs∕GaAs quantum dot laser diodes with ultralow threshold at 1.25 μm. Applied Physics Letters, 2006, 88(26): 262104
CrossRef Google scholar
[65]
Guimard D, Ishida M, Hatori N, Nakata Y, Sudo H, Yamamoto T, Sugawara M, Arakawa Y. CW lasing at 1.35 μm from ten InAs–Sb: GaAs quantum-dot layers grown by metal-organic chemical vapor deposition. IEEE Photonics Technology Letters, 2008, 20(10): 827–829
CrossRef Google scholar
[66]
Kaminow I, Li T Y, Willner A. Optical Fiber Telecommunications V A. 5th ed. Components and Subsystems, Elsevier, 2008
[67]
Konttinen J, Harkonen A, Tuomisto P, Guina M, Rautiainen J, Pessa M, Okhotnikov O. High-power (>1 W) dilute nitride semiconductor disk laser emitting at 1240 nm. New Journal of Physics, 2007, 9(5): 140
CrossRef Google scholar
[68]
Lita B, Goldman R S, Philips J D, Bhattacharya P K. Nanometer-scale studies of vertical organization and evolution of stacked self-assembled InAs/GaAs quantum dots. Applied Physics Letters, 1999, 74(19): 2824
CrossRef Google scholar
[69]
Heinrichsdorff F, Grundmann M, Stier O, Krost A, Bimberg D. Influence of In/Ga intermixing on the optical properties of InGaAs/GaAs quantum dots. Journal of Crystal Growth, 1998, 195(1–4): 540–545
CrossRef Google scholar
[70]
Lagatsy A A, Bain F M, Brown C T A, Sibbett W, Livshits D A, Erbert G, Rafailov E U. Low-loss quantum-dot-based saturable absorber for efficient femtosecond pulse generation. Applied Physics Letters, 2007, 91: 231111
CrossRef Google scholar
[71]
Strittmatter A, Germann T D, Pohl J, Pohl U W, Bimberg D, Rautiainen J, Guina M, Okhotnikov O G. 1040 nm vertical external cavity surface emitting laser based on InGaAs quantum dots grown in Stranski-Krastanow regime. Electronics Letters, 2008, 44(4): 290–291
CrossRef Google scholar
[72]
Germann T D, Strittmatter A, Pohl J, Pohl U W, Bimberg D, Rautiainen J, Guina M, Okhotnikov O G. Temperature-stable operation of a quantum dot semiconductor disk laser. Applied Physics Letters, 2008, 93(5): 051104
CrossRef Google scholar
[73]
Germann T D, Strittmatter A, Pohl J, Pohl U W, Bimberg D, Rautiainen J, Guina M, Okhotnikov O G. High-power semiconductor disk laser based on InAs∕GaAs submonolayer quantum dots. Applied Physics Letters, 2008, 92(10): 101123
CrossRef Google scholar
[74]
Lenz A, Eisele H, Timm R, Hennig Ch, Becker S K, Sellin R L, Pohl U W, Bimberg D, Dahne M. Nanovoids in InGaAs∕GaAs quantum dots observed by cross-sectional scanning tunneling microscopy. Applied Physics Letters, 2004, 85(17): 3848
CrossRef Google scholar
[75]
Germann T D, Strittmatter A, Pohl U W, Bimberg D, Rautiainen J, Guina M, Okhotnikov O G. Quantum-dot semiconductor disk lasers. Journal of Crystal Growth, 2008, 310(23): 5182–5186
CrossRef Google scholar
[76]
Germann T D, Strittmatter A, Kettler T, Posilovic K, Pohl U W, Bimberg D. MOCVD of InGaAs/GaAs quantum dots for lasers emitting close to 1.3 μm. Journal of Crystal Growth, 2007, 298: 591–594
CrossRef Google scholar
[77]
Pelton M, Yamamoto Y. Ultralow threshold laser using a single quantum dot and a microsphere cavity. Physical Review A, 1999, 59(3): 2418–2421
CrossRef Google scholar
[78]
Strauf S, Jahnke F. Single quantum dot nanolaser. Laser Photonics Reviews, 2011, 5(5): 607–633
[79]
Strauf S, Hennessy K, Rakher M T, Choi Y S, Badolato A, Andreani L C, Hu E L, Petroff P M, Bouwmeester D. Self-tuned quantum dot gain in photonic crystal lasers. Physical Review Letters, 2006, 96(12): 127404
CrossRef Pubmed Google scholar
[80]
Pelton M, Santori C, Vucković J, Zhang B, Solomon G S, Plant J, Yamamoto Y. Efficient source of single photons: a single quantum dot in a micropost microcavity. Physical Review Letters, 2002, 89(23): 233602
CrossRef Pubmed Google scholar
[81]
Song B S, Noda S, Asano T, Akahane Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Materials, 2004, 4(3): 207–210
CrossRef Google scholar
[82]
Lodahl P, Floris Van Driel A, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature, 2004, 430(7000): 654–657
CrossRef Pubmed Google scholar
[83]
Reithmaier J P, Sek G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 2004, 432(7014): 197–200
CrossRef Pubmed Google scholar
[84]
Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 2004, 432(7014): 200–203
CrossRef Pubmed Google scholar
[85]
Yamaguchi M, Asano T, Noda S. Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics. Optics Express, 2008, 16(22): 18067–18081
CrossRef Pubmed Google scholar
[86]
Yao P J, Rao M V S C, Hughes S. On-chip single photon sources using planar photonic crystals and single quantum dots. Laser & Photonics Reviews, 2010, 4(4): 499–516
[87]
Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, Fält S, Hu E L, Imamoğlu A. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 2007, 445(7130): 896–899
CrossRef Pubmed Google scholar
[88]
Shan G C, Zhao X H, Huang W. Nanolaser with a single-graphene-nanoribbon in a microcavity. Journal of Nanoelectronics and Optoelectronics, 2011, 6(2): 138–143
[89]
Nomura M, Kumagai N, Iwamoto S, Ota Y, Arakawa Y. Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system. Nature Physics, 2010, 6(4): 279–283
CrossRef Google scholar
[90]
Cirac J I, Zoller P, Kimble H J, Mabuchi H. Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network. Physical Review Letters, 1997, 78(16): 3221–3224
CrossRef Google scholar

Acknowledgments

The research conducted in State Key Laboratory of Functional Material for Informatics has been supported by the Major State Basic Research Development Program of China (No. 2009CB930600), and by a Strategic Research Grant (No. 7008101) from City University of Hong Kong.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(380 KB)

Accesses

Citations

Detail

Sections
Recommended

/