Direct band gap luminescence from Ge on Si pin diodes

E. KASPER, M. OEHME, J. WERNER, T. AGUIROV, M. KITTLER

PDF(103 KB)
PDF(103 KB)
Front. Optoelectron. ›› 2012, Vol. 5 ›› Issue (3) : 256-260. DOI: 10.1007/s12200-012-0235-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Direct band gap luminescence from Ge on Si pin diodes

Author information +
History +

Abstract

Germanium (Ge) pin photodiodes show clear direct band gap emission at room temperature, as grown on bulk silicon in both photoluminescence (PL) and electroluminescence (EL). PL stems from the top contact layer with highly doped Ge because of strong absorption of visible laser light excitation (532 nm). EL stems from the recombination of injected carriers in the undoped intrinsic layer. The difference in peak positions for PL (0.73 eV) and EL (0.80 eV) is explained by band gap narrowing from high doping in n+-top layer. A superlinear increase of EL with current density is explained by a rising ratio of direct/indirect electron densities when quasi Fermi energy level rises into the conduction band. An analytical model for the direct/indirect electron density ratio is given using simplifying assumptions.

Keywords

photoluminescence (PL) / electroluminescence (EL) / germanium (Ge) / direct band gap

Cite this article

Download citation ▾
E. KASPER, M. OEHME, J. WERNER, T. AGUIROV, M. KITTLER. Direct band gap luminescence from Ge on Si pin diodes. Front Optoelec, 2012, 5(3): 256‒260 https://doi.org/10.1007/s12200-012-0235-4

References

[1]
Klingenstein W, Schweizer H. Direct gap recombination in germanium at high excitation level and low temperature. Solid-State Electronics, 1978, 21(11-12): 1371-1374
CrossRef Google scholar
[2]
Sun X, Liu J, Kimerling L C, Michel J. Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. Optics Letters, 2009, 34(8): 1198-1200
CrossRef Pubmed Google scholar
[3]
Cheng S L, Lu J, Shambat G, Yu H Y, Saraswat K, Vuckovic J, Nishi Y. Room temperature 16 µm electroluminescence from Ge light emitting diode on Si substrate. Optics Express, 2009, 17(12): 10019
CrossRef Google scholar
[4]
Liu J, Sun X, Kimerling L C, Michel J. Direct-gap optical gain of Ge on Si at room temperature. Optics Letters, 2010, 34(11): 1738
CrossRef Google scholar
[5]
Liu J, Sun X, Camacho-Aguilera R, Kimerling L C, Michel J. Ge-on-Si laser operating at room temperature. Optics Letters, 2010, 35(5): 679-681
CrossRef Pubmed Google scholar
[6]
Jalali B, Fathpour S. Silicon photonics. Journal of Lightwave Technology, 2006, 24(12): 4600-4615
[7]
Soref R. Silicon photonics: a review of recent literature. Silicon, 2010, 2(1): 1-6
CrossRef Google scholar
[8]
Oehme M, Werner J, Kaschel M, Kirfel O, Kasper E. Germanium waveguide photodetectors integrated on silicon with MBE. Thin Solid Films, 2008, 517(1): 137-139
CrossRef Google scholar
[9]
Klinger S, Berroth M, Kaschel M, Oehme M, Kasper E. Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz. IEEE Photonics Technology Letters, 2009, 21(13): 920-922
CrossRef Google scholar
[10]
Oehme M, Kaschel M, Werner J, Kirfel O, Kasper E, Schulze J. Germanium on silicon photodetectors with broad spectral range. Journal of the Electrochemical Society, 2010, 157(2): H144
CrossRef Google scholar
[11]
Schmid M, Oehme M, Kaschel M, Werner J, Kasper E, Schulze J. Franz-Keldysh effect in germanium p-i-n photodetectors on silicon. In: 7th IEEE International Conference on Group IV Photonics (GFP). 2010, 329-331
[12]
Oehme M, Werner J, Kasper E. Molecular beam epitaxy of highly antimony doped germanium on silicon. Journal of Crystal Growth, 2008, 310(21): 4531-4534
CrossRef Google scholar
[13]
Kasper E, Oehme M, Lupaca-Schomber J. High Ge content SiGe alloys: doping and contact formation. ECS Transactions, 2008, 16(10): 893-904
CrossRef Google scholar
[14]
Kittler M, Aguirov T. ECS 2010, post-deadline talk
[15]
Klaassen D B M, Slotboom J W, de Graaff H C. Unified apparent bandgap narrowing in n- and p-type silicon. Solid-State Electronics, 1992, 35(2): 125-129
CrossRef Google scholar
[16]
Pankove J I, Aigrain P. Optical absorption of arsenic-doped degenerate germanium. Physical Review, 1962, 126(3): 956-962m
CrossRef Google scholar
[17]
Jain S C, Roulston D J. A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1-x strained layers. Solid-State Electronics, 1991, 34(5): 453-465
CrossRef Google scholar
[18]
Burstein E. Anomalous optical absorption limit in InSb. Physical Review, 1954, 93(3): 632-633
CrossRef Google scholar
[19]
Kasper E, Oehme M, Arguirov T, Werner J, Kittler M, Schulze J. Room Temperature direct Band Gap Emission from Ge p-i-n Heterojunction Photodiodes. In: 7th IEEE International Conference on Group IV Photonics Late paper, 2010
[20]
Kasper E, Paul D J. Silicon Integrated Quantum Circuits. Berlin: Springer Verlag, 2005

Acknowledgements

The authors thank O. Kirfel, M. Kaschel and M. Schmid for assistance with growth, device processing and measurements. Discussions with J. Schulze are acknowledged. Thanks to K. Ye for help with manuscript preparation. This work was supported by DFG (German Research Foundation).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(103 KB)

Accesses

Citations

Detail

Sections
Recommended

/