Optical sampling system using periodically-poled lithium niobate waveguide and nonlinear polarization rotation mode-locked fiber laser

Jian LI, Aiying YANG, Lin ZUO, Junsen LAI, Yunan SUN

PDF(305 KB)
PDF(305 KB)
Front. Optoelectron. ›› 2012, Vol. 5 ›› Issue (2) : 208-213. DOI: 10.1007/s12200-012-0230-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Optical sampling system using periodically-poled lithium niobate waveguide and nonlinear polarization rotation mode-locked fiber laser

Author information +
History +

Abstract

A novel design of optical sampling system has been developed by using sum-frequency generation (SFG) in a periodically-poled lithium niobate (PPLN) waveguide and using passive mode-locked fiber laser pulses as optical sampling pulses. The system achieved high temporal resolution and high sensitivity using a 30 mm length PPLN with quasi phase match period of 19.3 μm and 151 fs sampling pulses which were generated by passive mode-lock fiber laser based on nonlinear polarization rotation (NPR). Clear eye-diagram of 10 Gbit/s non-return-to-zeros (NRZ) pseudorandom binary sequence (PRBS) optical signal were successfully reconstructed by this system.

Keywords

periodically-poled lithium niobate (PPLN) / optical sampling / nonlinear polarization rotation (NPR) fiber laser / sum-frequency generation (SFG)

Cite this article

Download citation ▾
Jian LI, Aiying YANG, Lin ZUO, Junsen LAI, Yunan SUN. Optical sampling system using periodically-poled lithium niobate waveguide and nonlinear polarization rotation mode-locked fiber laser. Front Optoelec, 2012, 5(2): 208‒213 https://doi.org/10.1007/s12200-012-0230-9

References

[1]
Takara H, Kawanishi S, Yokoo A, Tomaru S, Kitoh T, Saruwatari M. 100 Gbit/s optical signal eye-diagram measurement with optical sampling using organic nonlinear optical crystal. Electronics Letters, 1996, 32(24): 2256-2258
CrossRef Google scholar
[2]
Ohta H, Nogiwa S, Kawaguichi Y, Endo Y. Measurement of 200Gbit/s optical eye diagram by optical sampling with gain-switched optical pulse. Electronics Letters, 2000, 36(8): 737-739
CrossRef Google scholar
[3]
Shake I, Otani E, Takara H, Uchiyama K, Yamabayashi Y, Morioka T. Bit rate flexible quality monitoring of 10 to 160 Gbit/s optical signals based on optical sampling technique. Electronics Letters, 2000, 36(25): 2087-2089
CrossRef Google scholar
[4]
Ohta H, Banjo N, Yamada N, Nogiwa S, Yanagisawa Y. Measuring eye diagram of 320 Gbit/s optical signal by optical sampling using passively modelocked fiber laser. Electronics Letters, 2001, 37(25): 1541-1542
CrossRef Google scholar
[5]
Nogiwa S, Ohta H, Kawaguchi Y, Endo Y. Improvement of sensitivity in optical sampling system. Electronics Letters, 1999, 35(11): 917-918
CrossRef Google scholar
[6]
Suhara T, Ishizuki H, Fujimura M, Nishihara H. Waveguide quasiphase-matched sum-frequency generation device for high-efficiency optical sampling. IEEE Photonics Technology Letters, 1999, 11(8): 1027-1029
CrossRef Google scholar
[7]
Nogiwa S, Kawaguchi Y, Ohta H, Endo Y. Highly sensitive and time-resolving optical sampling system using thin PPLN crystal. Electronics Letters, 2000, 36(20): 1727-1728
CrossRef Google scholar
[8]
Kawanishi S, Yamamoto T, Nakazawa M, Fejer M M. High sensitivity waveform measurement with optical sampling using quasi-phasematched mixing in LiNbO3 waveguide. Electronics Letters, 2001, 37(13): 842-844
CrossRef Google scholar
[9]
Jungerman R L, Lee G, Buccafusca O, Kaneko Y, Itagaki N, Shioda R, Harada A, Nihei Y, Sucha G. 1-THz bandwidth C- and L-band optical sampling with a bit rate agile timebase. IEEE Photonics Technology Letters, 2002, 14(8): 1148-1150
CrossRef Google scholar
[10]
Nogiwa S, Yamada N, Ohta H. Optical sampling system using a PPLN crystal and wavelength tunable soliton pulse. In: Proceedings of IEEE LTIMC 2004, New York, 73-78
[11]
Yang A Y, Wu X Y, Qiao Y J, Sun Y N. Bit-rate adaptive optical performance monitoring method for fiber communication systems. Optics Communications, 2011, 284(1): 436-440
CrossRef Google scholar
[12]
Yang A Y, Lai J S, Y N Sun. A chirp-z-transform-based software synchronization method for optical performance monitoring IEEE Photonic Technology letters, 2011, 23 (22): 1739-1741
[13]
Li J, Hansryd J, Hedekvist P O, Andrekson P A, Knudsen S N. 300 Gbit/s eye-diagram measurement by optical sampling using fiber-based parametric amplification. IEEE Photonics Technology Letters, 2001, 13(9): 987-989
CrossRef Google scholar
[14]
Furukawa H, Takakura H, Kuroda K. A novel optical device with wide-bandwidth wavelength conversion and an optical sampling experiment at 200 Gbit/s. IEEE Transactions on Instrumentation and Measurement, 2001, 50(3): 801-807
CrossRef Google scholar
[15]
Shirane M, Hashimoto Y, Yamada H, Yokoyama H. A compact optical sampling measurement system using mode-locked laser-diode modules. IEEE Photonics Technology Letters, 2000, 12(11): 1537-1539
CrossRef Google scholar
[16]
Diez S, Ludwig R, Schmidt C, Feiste U, Weber H G. 160-Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technology Letters, 1999, 11(11): 1402-1404
CrossRef Google scholar
[17]
Kang I, Dreyer K F. Sensitive 320 Gb/s eye diagram measurements via optical sampling with semiconductor optical amplifier-ultrafast nonlinear interferometer. Electronics Letters, 2003, 39(14): 1081-1083
[18]
Westlund M, Sunnerud H, Olsson B E, Andrekson P A. Simple scheme for polarization-independent all-optical sampling. IEEE Photonics Technology Letters, 2004, 16(9): 2108-2110
CrossRef Google scholar
[19]
Westlund M, Sunnerud H, Karlsson M, Andrekson P A. Software-sysnchronized all-optical sampling for fiber communication system. Journal of Ligthwave Technology, 2005, 23(3): 1088-1099

Acknowledgements

The project was supported by Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), the National Natural Science Foundation of China (Grant Nos. 60978007, 61027007 and 61177067)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(305 KB)

Accesses

Citations

Detail

Sections
Recommended

/