Optical sampling system using periodically-poled lithium niobate waveguide and nonlinear polarization rotation mode-locked fiber laser
Jian LI, Aiying YANG, Lin ZUO, Junsen LAI, Yunan SUN
Optical sampling system using periodically-poled lithium niobate waveguide and nonlinear polarization rotation mode-locked fiber laser
A novel design of optical sampling system has been developed by using sum-frequency generation (SFG) in a periodically-poled lithium niobate (PPLN) waveguide and using passive mode-locked fiber laser pulses as optical sampling pulses. The system achieved high temporal resolution and high sensitivity using a 30 mm length PPLN with quasi phase match period of 19.3 μm and 151 fs sampling pulses which were generated by passive mode-lock fiber laser based on nonlinear polarization rotation (NPR). Clear eye-diagram of 10 Gbit/s non-return-to-zeros (NRZ) pseudorandom binary sequence (PRBS) optical signal were successfully reconstructed by this system.
periodically-poled lithium niobate (PPLN) / optical sampling / nonlinear polarization rotation (NPR) fiber laser / sum-frequency generation (SFG)
[1] |
Takara H, Kawanishi S, Yokoo A, Tomaru S, Kitoh T, Saruwatari M. 100 Gbit/s optical signal eye-diagram measurement with optical sampling using organic nonlinear optical crystal. Electronics Letters, 1996, 32(24): 2256-2258
CrossRef
Google scholar
|
[2] |
Ohta H, Nogiwa S, Kawaguichi Y, Endo Y. Measurement of 200Gbit/s optical eye diagram by optical sampling with gain-switched optical pulse. Electronics Letters, 2000, 36(8): 737-739
CrossRef
Google scholar
|
[3] |
Shake I, Otani E, Takara H, Uchiyama K, Yamabayashi Y, Morioka T. Bit rate flexible quality monitoring of 10 to 160 Gbit/s optical signals based on optical sampling technique. Electronics Letters, 2000, 36(25): 2087-2089
CrossRef
Google scholar
|
[4] |
Ohta H, Banjo N, Yamada N, Nogiwa S, Yanagisawa Y. Measuring eye diagram of 320 Gbit/s optical signal by optical sampling using passively modelocked fiber laser. Electronics Letters, 2001, 37(25): 1541-1542
CrossRef
Google scholar
|
[5] |
Nogiwa S, Ohta H, Kawaguchi Y, Endo Y. Improvement of sensitivity in optical sampling system. Electronics Letters, 1999, 35(11): 917-918
CrossRef
Google scholar
|
[6] |
Suhara T, Ishizuki H, Fujimura M, Nishihara H. Waveguide quasiphase-matched sum-frequency generation device for high-efficiency optical sampling. IEEE Photonics Technology Letters, 1999, 11(8): 1027-1029
CrossRef
Google scholar
|
[7] |
Nogiwa S, Kawaguchi Y, Ohta H, Endo Y. Highly sensitive and time-resolving optical sampling system using thin PPLN crystal. Electronics Letters, 2000, 36(20): 1727-1728
CrossRef
Google scholar
|
[8] |
Kawanishi S, Yamamoto T, Nakazawa M, Fejer M M. High sensitivity waveform measurement with optical sampling using quasi-phasematched mixing in LiNbO3 waveguide. Electronics Letters, 2001, 37(13): 842-844
CrossRef
Google scholar
|
[9] |
Jungerman R L, Lee G, Buccafusca O, Kaneko Y, Itagaki N, Shioda R, Harada A, Nihei Y, Sucha G. 1-THz bandwidth C- and L-band optical sampling with a bit rate agile timebase. IEEE Photonics Technology Letters, 2002, 14(8): 1148-1150
CrossRef
Google scholar
|
[10] |
Nogiwa S, Yamada N, Ohta H. Optical sampling system using a PPLN crystal and wavelength tunable soliton pulse. In: Proceedings of IEEE LTIMC 2004, New York, 73-78
|
[11] |
Yang A Y, Wu X Y, Qiao Y J, Sun Y N. Bit-rate adaptive optical performance monitoring method for fiber communication systems. Optics Communications, 2011, 284(1): 436-440
CrossRef
Google scholar
|
[12] |
Yang A Y, Lai J S, Y N Sun. A chirp-z-transform-based software synchronization method for optical performance monitoring IEEE Photonic Technology letters, 2011, 23 (22): 1739-1741
|
[13] |
Li J, Hansryd J, Hedekvist P O, Andrekson P A, Knudsen S N. 300 Gbit/s eye-diagram measurement by optical sampling using fiber-based parametric amplification. IEEE Photonics Technology Letters, 2001, 13(9): 987-989
CrossRef
Google scholar
|
[14] |
Furukawa H, Takakura H, Kuroda K. A novel optical device with wide-bandwidth wavelength conversion and an optical sampling experiment at 200 Gbit/s. IEEE Transactions on Instrumentation and Measurement, 2001, 50(3): 801-807
CrossRef
Google scholar
|
[15] |
Shirane M, Hashimoto Y, Yamada H, Yokoyama H. A compact optical sampling measurement system using mode-locked laser-diode modules. IEEE Photonics Technology Letters, 2000, 12(11): 1537-1539
CrossRef
Google scholar
|
[16] |
Diez S, Ludwig R, Schmidt C, Feiste U, Weber H G. 160-Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technology Letters, 1999, 11(11): 1402-1404
CrossRef
Google scholar
|
[17] |
Kang I, Dreyer K F. Sensitive 320 Gb/s eye diagram measurements via optical sampling with semiconductor optical amplifier-ultrafast nonlinear interferometer. Electronics Letters, 2003, 39(14): 1081-1083
|
[18] |
Westlund M, Sunnerud H, Olsson B E, Andrekson P A. Simple scheme for polarization-independent all-optical sampling. IEEE Photonics Technology Letters, 2004, 16(9): 2108-2110
CrossRef
Google scholar
|
[19] |
Westlund M, Sunnerud H, Karlsson M, Andrekson P A. Software-sysnchronized all-optical sampling for fiber communication system. Journal of Ligthwave Technology, 2005, 23(3): 1088-1099
|
/
〈 | 〉 |