Highly efficient silicon light emitting diodes produced by doping engineering

Jiaming SUN, M. HELM, W. SKORUPA, B. SCHMIDT, A. MÜCKLICH

PDF(240 KB)
PDF(240 KB)
Front. Optoelectron. ›› 2012, Vol. 5 ›› Issue (1) : 7-12. DOI: 10.1007/s12200-012-0226-5
REVIEW ARTICLE
REVIEW ARTICLE

Highly efficient silicon light emitting diodes produced by doping engineering

Author information +
History +

Abstract

This paper reviews our recent progress on silicon (Si) pn junction light emitting diodes with locally doping engineered carrier potentials. Boron implanted Si diodes with dislocation loops have electroluminescence (EL) quantum efficiency up to 0.12%, which is two orders of magnitude higher than those without dislocations. Boron gettering along the strained dislocation lines produces locally p-type spike doping at the dislocations, which have potential wells for bounding spatially indirect excitons. Thermal dissociation of the bound excitons releases free carriers, leading to an anomalous increase of the band to band luminescence with increasing temperature. Si light emitting diodes with external quantum efficiency of 0.2% have been also demonstrated by implementation of pnpn modulation doping arrays.

Keywords

silicon (Si) light emitting diodes / doping engineering / dislocation / modulation doping

Cite this article

Download citation ▾
Jiaming SUN, M. HELM, W. SKORUPA, B. SCHMIDT, A. MÜCKLICH. Highly efficient silicon light emitting diodes produced by doping engineering. Front Optoelec, 2012, 5(1): 7‒12 https://doi.org/10.1007/s12200-012-0226-5

References

[1]
Pavesi L. Will silicon be the photonic material of the third millenium? Journal of Physics: Condensed Matter, 2003, 15(26): R1169–R1196
CrossRef Google scholar
[2]
Ennen H, Schneider J, Pomrenke G, Axmann A. 1.54-µm luminescence of erbium-implanted III-V semiconductors and silicon. Applied Physics Letters, 1983, 43(10): 943–945
CrossRef Google scholar
[3]
Michel J, Benton J L, Ferrante R F, Jacobson D C, Eaglesham D J, Fitzgerald E A, Xie Y H, Poate J M, Kimerling L C. Impurity enhancement of the 1.54-µm Er3+ luminescence in silicon. Journal of Applied Physics, 1991, 70(5): 2672–2678
CrossRef Google scholar
[4]
Franzò G, Irrera A, Moreira E C, Miritello M, Iacona F, Sanfilippo D, Di Stefano G, Fallica P G, Priolo F. Electroluminescence of silicon nanocrystals in MOS structures. Applied Physics A: Materials Science & Processing, 2002, 74(1): 1–5
CrossRef Google scholar
[5]
Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Optical gain in silicon nanocrystals. Nature, 2000, 408(6811): 440–444
CrossRef Pubmed Google scholar
[6]
Iacona F, Pacifici D, Irrera A, Miritello M, Franzò G, Priolo F, Sanfilippo D, Di Stefano G, Fallica P G.Electroluminescence at 1.54 µm in Er-doped Si nanoclustor-based devices. Applied Physics Letters, 2002, 81(17): 3242–3244
CrossRef Google scholar
[7]
Rebohle L, Gebel T, Von Borany J, Skorupa W, Helm M, Pacifici D, Franzò G, Priolo F. Transient behavior of the strong violet electroluminescence of Ge-implanted SiO2 layers. Applied Physics B, Lasers and Optics, 2002, 74(1): 53–56
CrossRef Google scholar
[8]
Sun J M, Skorupa W, Dekorsy T, Helm M. Efficient electroluminescence from rare-earth implanted SiO2 metal-oxide-semiconductor structures. In: 2nd IEEE International Conference on Group IV Photonics, 2005, 48–51
[9]
Ng W L, Lourenço M A, Gwilliam R M, Ledain S, Shao G, Homewood K P. An efficient room-temperature silicon-based light-emitting diode. Nature, 2001, 410(6825): 192–194
CrossRef Pubmed Google scholar
[10]
Sun J M, Dekorsy T, Skorupa W, Schmidt B, Helm M. Origin of anomalous temperature dependence and high efficiency of silicon light-emitting diodes. Applied Physics Letters, 2003, 83(19): 3885–3887
CrossRef Google scholar
[11]
Sun J. M, Dekorsy T, Skorupa, W, Schmidt B, Mücklich A, Helm M. Below-band-gap electroluminescence related to doping spikes in boron-implanted silicon pn diodes. Physical Review B, 2004, 70(15): 155316(1-11)
[12]
Solmi S, Landi E, Baruffaldi F. High-concentration boron diffusion in silicon: Simulation of the precipitation phenomena. Journal of Applied Physics, 1990, 68(7): 3250–3258
CrossRef Google scholar
[13]
Bonafos C, Claverie A, Alquier D, Bergaud C, Martinez A, Laânab L, Mathiot D. The effect of the boron doping level on the thermal behaviour of end-of-range defects in silicon. Applied Physics Letters, 1997, 71(3): 365–367
CrossRef Google scholar

Acknowledgements

This work was partially supported by the Major State Basic Research Development Program of China (No. 2007CB613403) and the National Natural Science Foundation of China (Grant No. 60977036). The authors would like to thank G. Schnabel, H. Felsmann, C. Neisser, I. Winkler, U. Lucchesi and M. Missbach for their assistance in the sample preparation.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(240 KB)

Accesses

Citations

Detail

Sections
Recommended

/