Highly efficient silicon light emitting diodes produced by doping engineering
Jiaming SUN, M. HELM, W. SKORUPA, B. SCHMIDT, A. MÜCKLICH
Highly efficient silicon light emitting diodes produced by doping engineering
This paper reviews our recent progress on silicon (Si) pn junction light emitting diodes with locally doping engineered carrier potentials. Boron implanted Si diodes with dislocation loops have electroluminescence (EL) quantum efficiency up to 0.12%, which is two orders of magnitude higher than those without dislocations. Boron gettering along the strained dislocation lines produces locally p-type spike doping at the dislocations, which have potential wells for bounding spatially indirect excitons. Thermal dissociation of the bound excitons releases free carriers, leading to an anomalous increase of the band to band luminescence with increasing temperature. Si light emitting diodes with external quantum efficiency of 0.2% have been also demonstrated by implementation of pnpn modulation doping arrays.
silicon (Si) light emitting diodes / doping engineering / dislocation / modulation doping
[1] |
Pavesi L. Will silicon be the photonic material of the third millenium? Journal of Physics: Condensed Matter, 2003, 15(26): R1169–R1196
CrossRef
Google scholar
|
[2] |
Ennen H, Schneider J, Pomrenke G, Axmann A. 1.54-µm luminescence of erbium-implanted III-V semiconductors and silicon. Applied Physics Letters, 1983, 43(10): 943–945
CrossRef
Google scholar
|
[3] |
Michel J, Benton J L, Ferrante R F, Jacobson D C, Eaglesham D J, Fitzgerald E A, Xie Y H, Poate J M, Kimerling L C. Impurity enhancement of the 1.54-µm Er3+ luminescence in silicon. Journal of Applied Physics, 1991, 70(5): 2672–2678
CrossRef
Google scholar
|
[4] |
Franzò G, Irrera A, Moreira E C, Miritello M, Iacona F, Sanfilippo D, Di Stefano G, Fallica P G, Priolo F. Electroluminescence of silicon nanocrystals in MOS structures. Applied Physics A: Materials Science & Processing, 2002, 74(1): 1–5
CrossRef
Google scholar
|
[5] |
Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Optical gain in silicon nanocrystals. Nature, 2000, 408(6811): 440–444
CrossRef
Pubmed
Google scholar
|
[6] |
Iacona F, Pacifici D, Irrera A, Miritello M, Franzò G, Priolo F, Sanfilippo D, Di Stefano G, Fallica P G.Electroluminescence at 1.54 µm in Er-doped Si nanoclustor-based devices. Applied Physics Letters, 2002, 81(17): 3242–3244
CrossRef
Google scholar
|
[7] |
Rebohle L, Gebel T, Von Borany J, Skorupa W, Helm M, Pacifici D, Franzò G, Priolo F. Transient behavior of the strong violet electroluminescence of Ge-implanted SiO2 layers. Applied Physics B, Lasers and Optics, 2002, 74(1): 53–56
CrossRef
Google scholar
|
[8] |
Sun J M, Skorupa W, Dekorsy T, Helm M. Efficient electroluminescence from rare-earth implanted SiO2 metal-oxide-semiconductor structures. In: 2nd IEEE International Conference on Group IV Photonics, 2005, 48–51
|
[9] |
Ng W L, Lourenço M A, Gwilliam R M, Ledain S, Shao G, Homewood K P. An efficient room-temperature silicon-based light-emitting diode. Nature, 2001, 410(6825): 192–194
CrossRef
Pubmed
Google scholar
|
[10] |
Sun J M, Dekorsy T, Skorupa W, Schmidt B, Helm M. Origin of anomalous temperature dependence and high efficiency of silicon light-emitting diodes. Applied Physics Letters, 2003, 83(19): 3885–3887
CrossRef
Google scholar
|
[11] |
Sun J. M, Dekorsy T, Skorupa, W, Schmidt B, Mücklich A, Helm M. Below-band-gap electroluminescence related to doping spikes in boron-implanted silicon pn diodes. Physical Review B, 2004, 70(15): 155316(1-11)
|
[12] |
Solmi S, Landi E, Baruffaldi F. High-concentration boron diffusion in silicon: Simulation of the precipitation phenomena. Journal of Applied Physics, 1990, 68(7): 3250–3258
CrossRef
Google scholar
|
[13] |
Bonafos C, Claverie A, Alquier D, Bergaud C, Martinez A, Laânab L, Mathiot D. The effect of the boron doping level on the thermal behaviour of end-of-range defects in silicon. Applied Physics Letters, 1997, 71(3): 365–367
CrossRef
Google scholar
|
/
〈 | 〉 |