Ge quantum dots light-emitting devices

Jinsong XIA, Takuya MARUIZUMI, Yasuhiro SHIRAKI

PDF(495 KB)
PDF(495 KB)
Front. Optoelectron. ›› 2012, Vol. 5 ›› Issue (1) : 13-20. DOI: 10.1007/s12200-012-0225-6
REVIEW ARTICLE
REVIEW ARTICLE

Ge quantum dots light-emitting devices

Author information +
History +

Abstract

Si photonics becomes one of the research focuses in the field of photonics. Si-based light-emitting devices are one of the most important devices in this field. In this paper, we review the Si-based light-emitting devices fabricated by embedding Ge self-assembled quantum dots into optical microcavities. Ge self-assembled quantum dots emit light in the telecommunication wavelength range from 1.3 to 1.6 μm, for which Si is transparent. Ge self-assembled quantum dots were grown on silicon-on-insulator (SOI) by molecular beam epitaxy (MBE) in Stranski-Krastanov (S-K) mode. Then, electron beam lithography (EBL) was used to define the pattern of optical microcavities on the wafer. Finally, the pattern was transferred onto the Si/Ge slab by inductive coupled plasma (ICP) dry etching. Room-temperature photoluminescence (PL) was used to characterize the light-emitting properties of fabricated devices. The results showed that strong resonant light emission was observed in different optical microcavities. Significant enhancement of the intensity was obtained by the optical resonance. Based on the results of PL, we designed and fabricated current-injected light-emitting devices based on Ge self-assembled quantum dots in optical microcavities. Room-temperature resonant light emission was observed from Ge dots in a 3.8 μm microdisk resonator.

Keywords

Si-based light-emitting devices / Ge self-assembled quantum dots / microcavities / photonic crystal (PhC) / microdisk

Cite this article

Download citation ▾
Jinsong XIA, Takuya MARUIZUMI, Yasuhiro SHIRAKI. Ge quantum dots light-emitting devices. Front Optoelec, 2012, 5(1): 13‒20 https://doi.org/10.1007/s12200-012-0225-6

References

[1]
Nayak D K, Usami N, Fukatsu S, Shiraki Y. Band-edge photoluminescence of SiGe/strained-Si/SiGe type-II quantum wells on Si(100). Applied Physics Letters, 1993, 63(25): 3509-3511
CrossRef Google scholar
[2]
Fukatsu S, Usami N, Kato Y, Sunamura H, Shiraki Y, Oku H, Ohnishi T, Ohmori Y, Okumura K. Gas-source molecular beam epitaxy and luminescence characterization of strained Si1-xGex/Si quantum wells. Journal of Crystal Growth, 1994, 136(1-4): 315-321
CrossRef Google scholar
[3]
Fukatsu S, Sunamuru H, Shiraki Y, Komiyama S. Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot. Applied Physics Letters, 1997, 71(2): 258-260
CrossRef Google scholar
[4]
Kawaguchi K, Morooka M, Konishi K, Koh S, Shiraki Y. Optical properties of strain-balanced SiGe planar microcavities with Ge dots on Si substrates. Applied Physics Letters, 2002, 81(5): 817-819
CrossRef Google scholar
[5]
Dashiell M W, Denker U, Müller C, Costantini G, Manzano C, Kern K, Schmidt O G. Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures. Applied Physics Letters, 2002, 80(7): 1279-1281
CrossRef Google scholar
[6]
Kim E S, Usami N, Shiraki Y. Control of Ge dots in dimension and position by selective epitaxial growth and their optical properties. Applied Physics Letters, 1998, 72(13): 1617-1619
CrossRef Google scholar
[7]
Lynch S A, Paul D J, Townsend P, Matmon G M, Suet Z, Kelsall R W, Ikonic Z, Harrison P, Zhang J, Noriss D J, Cullis A G, Pidgeon C R, Murzyn P, Murdin B, Bain M, Gamble H S, Zhao M, Ni W X. Toward silicon-based lasers for Terahertz sources. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 2(6): 1570-1577
CrossRef Google scholar
[8]
Dehlinger G, Diehl L, Gennser U, Sigg H, Faist J, Ensslin K, Grützmacher DMüller E. Intersubband electroluminescence from silicon-based quantum cascade structures. Science, 2000, 290(5500): 2277-2280
CrossRef Pubmed Google scholar
[9]
Franzò G, Priolo F, Coffa S, Polman A, Camera A. Room-temperature electroluminescence from Er-doped crystalline Si. Applied Physics Letters, 1994, 64(17): 2235-2237
CrossRef Google scholar
[10]
Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Optical gain in silicon nanocrystals. Nature, 2000, 408(6811): 440-444
CrossRef Pubmed Google scholar
[11]
Ng W L, Lourenço M A, Gwilliam R M, Ledain S, Shao G, Homewood K P. An efficient room-temperature silicon-based light-emitting diode. Nature, 2001, 410(6825): 192-194
CrossRef Pubmed Google scholar
[12]
Purcell E M. Spontaneous emission probabilities at radio frequencies. Physical Review, 1946, 69: 681
[13]
Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20): 2059-2062
CrossRef Pubmed Google scholar
[14]
Kawaguchi K, Koh S, Shiraki Y, Zhang J. Fabrication of strain-balanced Si0.73Ge0.27/Si distributed Bragg reflectors on Si substrates. Applied Physics Letters, 2001, 79(4): 476-478
CrossRef Google scholar
[15]
Kawaguchi K, Morooka M, Konishi K, Koh S, Shiraki Y. Optical properties of strain-balanced SiGe planar microcavities with Ge dots on Si substrates. Applied Physics Letters, 2002, 81(5): 817-819
CrossRef Google scholar
[16]
Kawaguchi K, Koh S, Shiraki Y, Zhang J. Fabrication of strain-balanced Si0.73Ge0.27/Si-distributed Bragg reflectors on Si substrates for optical device applications. Physica E, Low-Dimensional Systems and Nanostructures, 2002, 13(2-4): 1051-1054
CrossRef Google scholar
[17]
Kawaguchi K, Konishi K, Koh S, Shiraki Y, Kaneko Y, Zhang J. Optical properties of strain-balanced Si0.73Ge0.27 planar microcavities on Si substrates. Japanese Journal of Applied Physics, 2002, 41(4B): 2664-2667
CrossRef Google scholar
[18]
McCall S L, Levi A F J, Slusher R E, Pearton S J, Logan R A. Whispering-gallery mode microdisk lasers. Applied Physics Letters, 1992, 60(3): 289-291
CrossRef Google scholar
[19]
Xia J S, Nemoto K, Ikegami Y, Usami N, Shiraki Y. Silicon-based light emitters fabricated by embedding Ge quantum dots in Si microdisks. Applied Physics Letters, 2007, 91(1): 011104
CrossRef Google scholar
[20]
Xia J S, Tominaga R, Usami N, Iwamoto S, Ikegami Y, Nemoto K, Arakawa Y, Shiraki Y. Resonant photoluminescence from Ge self-assembled dots in optical microcavities. Journal of Crystal Growth, 2009, 311(3): 883-887
CrossRef Google scholar
[21]
Xia J S, Ikegami Y, Shiraki Y, Usami N, Nakata Y. Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature. Applied Physics Letters, 2006, 89(20): 201102
CrossRef Google scholar
[22]
Xia J S, Ryuichiro T, Fukamizu S, Usami N, Shiraki Y. Generation and wavelength control of resonant luminescence from silicon photonic crystal microcavities with Ge dots. Japanese Journal of Applied Physics, 2009, 48(2): 022102
CrossRef Google scholar
[23]
El Kurdi M, David S, Boucaud P, Kammerer C, Li X, Le Thanh V, Sauvage S, Lourtioz J M. Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator. Journal of Applied Physics, 2004, 96(2): 997-1000
CrossRef Google scholar
[24]
Boucaud P, Li X, El Kurdi M, David S, Checoury X, Sauvage S, Kammerer C, Cabaret S, Le Thanh V, Bouchier D, Lourtioz J M, Kermarrec O, Campidelli Y, Bensahel D. Ge islands and photonic crystals for Si-based photonics. Optical Materials, 2005, 27(5): 792-798
CrossRef Google scholar
[25]
Li X, Boucaud P, Checoury X, Kermarrec O, Campidelli Y, Bensahel D. Probing photonic crystals on silicon-on-insulator with Ge/Si self-assembled islands as an internal source. Journal of Applied Physics, 2006, 99(2): 023103
CrossRef Google scholar
[26]
Li X, Boucaud P, Checoury X, El Kurdi M, David S, Sauvage S, Yam N, Fossard F, Bouchier D, Fédéli J M, Salomon A, Calvo V, Hadji E. Quality factor control of Si-based two-dimensional photonic crystals with a Bragg mirror. Applied Physics Letters, 2006, 88(9): 091122
CrossRef Google scholar
[27]
El Kurdi M, Checoury X, David S, Ngo T P, Zerounian N, Boucaud P, Kermarrec O, Campidelli Y, Bensahel D. Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source. Optics Express, 2008, 16(12): 8780-8791
CrossRef Pubmed Google scholar
[28]
Fukatsu S, Usami N, Chinzei T, Shiraki Y, Nishida A, Nakagawa K. Electroluminescence from strained SiGe/Si quantum well structures grown by solid source Si molecular beam epitaxy. Japanese Journal of Applied Physics, 1992, 31(8A): L1015-L1017
CrossRef Google scholar
[29]
Brunhes T, Boucaud P, Sauvage S, Aniel F, Lourtioz J M, Hernandez C, Campidelli Y, Kermarrec O, Bensahel D, Faini G, Sagnes I. Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition. Applied Physics Letters, 2000, 77(12): 1822-1824
CrossRef Google scholar
[30]
Xia J S, Takeda Y, Usami N, Maruizumi T, Shiraki Y. Room-temperature electroluminescence from Si microdisks with Ge quantum dots. Optics Express, 2010, 18(13): 13945-13950
CrossRef Pubmed Google scholar

Acknowledgements

The authors would like to thank Prof. Usami from Tohoku University for his help in the growth of Ge quantum dots. This work was supported by the Fundamental Research Funds for the Central Universities of Huazhong University of Science and Technology (No. 2011TS022) and the National Natural Science Foundation of China (Grant No. 61177049).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(495 KB)

Accesses

Citations

Detail

Sections
Recommended

/