On-chip silicon light source: from photonics to plasmonics
Guangzhao RAN, Hongqiang LI, Chong WANG
On-chip silicon light source: from photonics to plasmonics
Practical silicon photonic interconnects become possible nowadays after the realization of the practical silicon light sources, where the hybrid integrations of III-V semiconductors and silicon by bonding play a fundamental role. Photonic interconnects dissipate substantially less power and offer a significantly greater information bandwidth than those of electronic interconnects; however, one emerging problem is the size mismatch between photonic and electronic components when integrated on a chip. Therefore, surface plasmonic source with deeply sub-wavelength size is under intense investigation as the next generation Si-based light source for on-chip interconnects. In this paper, we shall review some of the latest achievements on this topic.
surface plasmon (SP) / silicon photonics / photonic interconnect / surface plasmon amplification by stimulated emission of radiation (SPASER)
[1] |
Dionne J A, Sweatlock L A, Sheldon M T, Alivisatos A P, Atwater H A. Silicon-based plasmonics for on-chip photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 295-306
CrossRef
Google scholar
|
[2] |
Soref R. The past, present, and future of silicon photonics. IEEE Journal on Selected Topics in Quantum Electronics, 2006, 12(6): 1678-1687
CrossRef
Google scholar
|
[3] |
Intel Labs white paper: The 50G silicon photonics link. 2010, http://newsroom.intel.com/docs/DOC-1131
|
[4] |
Walters R J, van Loon R V, Brunets I, Schmitz J, Polman A. A silicon-based electrical source of surface plasmon polaritons. Nature Materials, 2010, 9(1): 21-25
CrossRef
Pubmed
Google scholar
|
[5] |
Fang A W, Park H, Cohen O, Jones R, Paniccia M J, Bowers J E. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Optics Express, 2006, 14(20): 9203-9210
CrossRef
Pubmed
Google scholar
|
[6] |
Liang D, Bowers J E. Recent progress in lasers on silicon. Nature Photonics, 2010, 4(7): 511-517
CrossRef
Google scholar
|
[7] |
Van Campenhout J, Rojo Romeo P, Regreny P, Seassal C, Van Thourhout D, Verstuyft S, Di Cioccio L, Fedeli J M, Lagahe C, Baets R. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Optics Express, 2007, 15(11): 6744-6749
CrossRef
Pubmed
Google scholar
|
[8] |
Hong T, Ran G Z, Chen T, Pan J Q, Chen W X, Wang Y, Cheng Y B, Liang S, Zhao L J, Yin L Q, Zhang J H, Wang W, Qin G G. A selective-area metal bonding InGaAsP-Si laser. IEEE Photonics Technology Letters, 2010, 22(15): 1141-1143
CrossRef
Google scholar
|
[9] |
Liang D, Roelkens G, Baets R, Bowers J E. Hybrid integrated platforms for silicon photonics. Materials, 2010, 3(3): 1782-1802
CrossRef
Google scholar
|
[10] |
Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Physics Review Letters, 2003, 90(2): 027402-027405
|
[11] |
Zheeludev N I, Prosvirnin S L, Papasimakis N, Fedotov V A. Lasing spaser. Nature Photonics, 2008, 2(6): 351-354
CrossRef
Google scholar
|
[12] |
Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461(7264): 629-632
CrossRef
Pubmed
Google scholar
|
[13] |
Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U. Demonstration of a spaser-based nanolaser. Nature, 2009, 460(7259): 1110-1112
CrossRef
Pubmed
Google scholar
|
[14] |
Neutens P, Lagae L, Borghs G, Van Dorpe P. Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides. Nano Letters, 2010, 10(4): 1429-1432
CrossRef
Pubmed
Google scholar
|
[15] |
Koller D M, Honhenau A, Ditlbacher H, Galler N, Reil F, Aussenegg F R, Leitner A, List E J W, Kernn J R. Organic plasmon-emitting diode. Nature Photonics, 2008, 2(11): 684-687
CrossRef
Google scholar
|
[16] |
Ran G Z, Jiang D F, Kan K, Chen H D. Experimental observation of polarized electroluminescence from edge-emission organic light emitting devices. Applied Physics Letters, 2010, 97(23): 3304-3306
CrossRef
Google scholar
|
[17] |
Hill M T, Marell M, Leong E S P, Smalbrugge B, Zhu Y C, Sun M H, van Veldhoven P J, Geluk E J, Karouta F, Oei Y S, Nötzel R, Ning C Z, Smit M K. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Optics Express, 2009, 17(13): 11107-11112
CrossRef
Pubmed
Google scholar
|
[18] |
Stockman M I. Spasers explained. Nature Photonics, 2008, 2(6): 327-329
CrossRef
Google scholar
|
[19] |
Schuller J A, Barnard E S, Cai W S, Jun Y C, White J S, Brongersma M L. Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010, 9(3): 193-204
CrossRef
Pubmed
Google scholar
|
[20] |
Barnes W L. Electromagnetic crystals for surface plasmonpolaritons and the extraction of light from emissive devices. Journal of Lightwave Technology, 1999, 17(11): 2170-2182
CrossRef
Google scholar
|
[21] |
Chance R R, Prock A, Silbey R. Molecular fluorescence and energy transfer near interfaces. Advances in Chemical Physics, 1978, 37: 1-65
|
[22] |
Winter G, Wedge S, Barnes W L. Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode? New Journal of Physics, 2006, 8(8): 125
CrossRef
Google scholar
|
/
〈 | 〉 |