Energy intensity analysis of modes in hybrid plasmonic waveguide

Ruixi ZENG, Yuan ZHANG, Sailing HE

Front. Optoelectron. ›› 2012, Vol. 5 ›› Issue (1) : 68-72.

PDF(222 KB)
PDF(222 KB)
Front. Optoelectron. ›› 2012, Vol. 5 ›› Issue (1) : 68-72. DOI: 10.1007/s12200-012-0195-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Energy intensity analysis of modes in hybrid plasmonic waveguide

Author information +
History +

Abstract

A hybrid plasmonic waveguide containing silicon core, silver cap and ultra-thin sandwiched SiO2 layer is studied. By analyzing the mode distribution patterns and the curves of mode effective index, we show how the plasmonic mode around the metal surface is coupled with the fundamental mode in the silicon core to form a squeezed hybrid mode. The ability of the hybrid plasmonic waveguide in energy confinement is also discussed quantitatively.

Keywords

plasmonic / hybrid plasmonic waveguide / energy intensity / integration density

Cite this article

Download citation ▾
Ruixi ZENG, Yuan ZHANG, Sailing HE. Energy intensity analysis of modes in hybrid plasmonic waveguide. Front Optoelec, 2012, 5(1): 68‒72 https://doi.org/10.1007/s12200-012-0195-8

References

[1]
Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311(5758): 189–193
CrossRef Pubmed Google scholar
[2]
Zia R, Schuller J A, Chandran A, Brongersma M L. Plasmonics: the next chip-scale technology. Materials Today, 2006, 9(7-8): 20–27
CrossRef Google scholar
[3]
Tanaka K, Tanaka M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Applied Physics Letters, 2003, 82(8): 1158–1160
CrossRef Google scholar
[4]
Kusunoki F, Yotsuya T, Takahara J, Kobayashi T. Propagation properties of guided waves in index-guided two-dimensional optical waveguides. Applied Physics Letters, 2005, 86(21): 211101
CrossRef Google scholar
[5]
Pile D F P, Gramotnev D K. Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Optics Letters, 2005, 30(10): 1186–1188
CrossRef Pubmed Google scholar
[6]
Liu L, Han Z H, He S. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645–6650
CrossRef Pubmed Google scholar
[7]
Veronis G, Fan S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Applied Physics Letters, 2005, 87(13): 131102
CrossRef Google scholar
[8]
Pile D F P, Gramotnev D K. Channel plasmon-polariton in a triangular groove on a metal surface. Optics Letters, 2004, 29(10): 1069–1071
CrossRef Pubmed Google scholar
[9]
Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440(7083): 508–511
CrossRef Pubmed Google scholar
[10]
Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics, 2008, 2(8): 496–500
CrossRef Google scholar
[11]
Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technology Letters, 2009, 21(6): 362–364
CrossRef Google scholar
[12]
Dai D X, Yang L, He S L. Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires. Journal of Lightwave Technology, 2008, 26(6): 704–709
CrossRef Google scholar
[13]
Alam M Z, Meier J, Aitchison J S, Mojahedi M. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express, 2010, 18(12): 12971–12979
CrossRef Pubmed Google scholar
[14]
Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653
CrossRef Pubmed Google scholar
[15]
Dai D X, Shi Y C, He S L, Wosinski L, Thylen L. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Optics Express, 2011, 19(14): 12925–12936
CrossRef Pubmed Google scholar
[16]
Ordal M A, Bell R J, Alexander R W Jr, Long L L, Querry M R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Applied Optics, 1985, 24(24): 4493–4499
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported partially by the National Natural Science Foundation of China (Grant Nos. 61178062 and 61108022).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(222 KB)

Accesses

Citations

Detail

Sections
Recommended

/