
Energy intensity analysis of modes in hybrid plasmonic waveguide
Ruixi ZENG, Yuan ZHANG, Sailing HE
Front. Optoelectron. ›› 2012, Vol. 5 ›› Issue (1) : 68-72.
Energy intensity analysis of modes in hybrid plasmonic waveguide
A hybrid plasmonic waveguide containing silicon core, silver cap and ultra-thin sandwiched SiO2 layer is studied. By analyzing the mode distribution patterns and the curves of mode effective index, we show how the plasmonic mode around the metal surface is coupled with the fundamental mode in the silicon core to form a squeezed hybrid mode. The ability of the hybrid plasmonic waveguide in energy confinement is also discussed quantitatively.
plasmonic / hybrid plasmonic waveguide / energy intensity / integration density
[1] |
Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311(5758): 189–193
CrossRef
Pubmed
Google scholar
|
[2] |
Zia R, Schuller J A, Chandran A, Brongersma M L. Plasmonics: the next chip-scale technology. Materials Today, 2006, 9(7-8): 20–27
CrossRef
Google scholar
|
[3] |
Tanaka K, Tanaka M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Applied Physics Letters, 2003, 82(8): 1158–1160
CrossRef
Google scholar
|
[4] |
Kusunoki F, Yotsuya T, Takahara J, Kobayashi T. Propagation properties of guided waves in index-guided two-dimensional optical waveguides. Applied Physics Letters, 2005, 86(21): 211101
CrossRef
Google scholar
|
[5] |
Pile D F P, Gramotnev D K. Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Optics Letters, 2005, 30(10): 1186–1188
CrossRef
Pubmed
Google scholar
|
[6] |
Liu L, Han Z H, He S. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645–6650
CrossRef
Pubmed
Google scholar
|
[7] |
Veronis G, Fan S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Applied Physics Letters, 2005, 87(13): 131102
CrossRef
Google scholar
|
[8] |
Pile D F P, Gramotnev D K. Channel plasmon-polariton in a triangular groove on a metal surface. Optics Letters, 2004, 29(10): 1069–1071
CrossRef
Pubmed
Google scholar
|
[9] |
Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440(7083): 508–511
CrossRef
Pubmed
Google scholar
|
[10] |
Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics, 2008, 2(8): 496–500
CrossRef
Google scholar
|
[11] |
Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technology Letters, 2009, 21(6): 362–364
CrossRef
Google scholar
|
[12] |
Dai D X, Yang L, He S L. Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires. Journal of Lightwave Technology, 2008, 26(6): 704–709
CrossRef
Google scholar
|
[13] |
Alam M Z, Meier J, Aitchison J S, Mojahedi M. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express, 2010, 18(12): 12971–12979
CrossRef
Pubmed
Google scholar
|
[14] |
Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653
CrossRef
Pubmed
Google scholar
|
[15] |
Dai D X, Shi Y C, He S L, Wosinski L, Thylen L. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Optics Express, 2011, 19(14): 12925–12936
CrossRef
Pubmed
Google scholar
|
[16] |
Ordal M A, Bell R J, Alexander R W Jr, Long L L, Querry M R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Applied Optics, 1985, 24(24): 4493–4499
CrossRef
Pubmed
Google scholar
|
/
〈 |
|
〉 |