High speed optical modulation in Ge quantum wells using quantum confined stark effect

Yiwen RONG, Yijie HUO, Edward T. FEI, Marco FIORENTINO, Michael R.T. TAN, Tomasz OCHALSKI, Guillaume HUYET, Lars THYLEN, Marek CHACINSKI, Theodore I. KAMINS, James S. HARRIS

PDF(548 KB)
PDF(548 KB)
Front. Optoelectron. ›› 2012, Vol. 5 ›› Issue (1) : 82-89. DOI: 10.1007/s12200-012-0194-9
RESEARCH ARTICLE
RESEARCH ARTICLE

High speed optical modulation in Ge quantum wells using quantum confined stark effect

Author information +
History +

Abstract

We focus on the optimization of SiGe material deposition, the minimization of the parasitic capacitance of the probe pads for high speed, low voltage and high contrast ratio operation. The device fabrication is based on processes for standard Si electronics and is suitable for mass-production. We present observations of quantum confinement and quantum-confined Stark effect (QCSE) electroabsorption in Ge quantum wells (QWs) with SiGe barriers grown on Si substrates. Though Ge is an indirect gap semiconductor, the resulting effects are at least as clear and strong as seen in typical III–V QW structures at similar wavelengths. We also demonstrated a modulator, with eye diagrams of up to 3.5 GHz, a small driving voltage of 2.5 V and a modulation bandwidth at about 10 GHz. Finally, carrier dynamics under ultra-fast laser excitation and high-speed photocurrent response are investigated.

Keywords

electroabsorption effect / Ge / optical interconnections / optical modulators / quantum-confined Stark effect (QCSE) / Ge/SiGe quantum wells (QWs)

Cite this article

Download citation ▾
Yiwen RONG, Yijie HUO, Edward T. FEI, Marco FIORENTINO, Michael R.T. TAN, Tomasz OCHALSKI, Guillaume HUYET, Lars THYLEN, Marek CHACINSKI, Theodore I. KAMINS, James S. HARRIS. High speed optical modulation in Ge quantum wells using quantum confined stark effect. Front Optoelec, 2012, 5(1): 82‒89 https://doi.org/10.1007/s12200-012-0194-9

References

[1]
MillerD A B, ChemlaD S, DamenT C, GossardA C, WiegmannW, WoodT H, BurrusC A. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Physical Review Letters, 1984, 53(22): 2173-2177
CrossRef Google scholar
[2]
MillerD A B, ChemlaD S, DamenT C, GossardA C, WiegmannW, WoodT H, BurrusC A. Electric field dependence of optical absorption near the bandgap of quantum well structures. Physical Review B: Condensed Matter and Materials Physics, 1985, 32(2): 1043-1060
CrossRef Google scholar
[3]
LewenR, IrmscherS, WestergrenU, ThylenL, ErikssonU. Segmented transmission-line electroabsorption modulators. Journal of Lightwave Technology, 2004, 22(1): 172-179
CrossRef Google scholar
[4]
AradU, RedmardE, ShamayM, AverboukhA, LevitS, EfronU. Development of a large high-performance 2-D array of GaAs-GaAs multiple quantum-well modulators. IEEE Photonics Technology Letters, 2003, 15(11): 1531-1533
CrossRef Google scholar
[5]
SimesJ, YanR H, GeelsR S, ColdrenL A, EnglishJ H, GossardA C, LishanD G. Electrically tunable Fabry-Perot mirror using multiple quantum well index modulation. Applied Physics Letters, 1988, 53(8): 637-639
CrossRef Google scholar
[6]
LeeY H, JewellJ L, WalkerS J, TuC W, HarbisonJ P, FlorezL T. Electrodispersive multiple quantum well modulator. Applied Physics Letters, 1988, 53(18): 1684-1686
CrossRef Google scholar
[7]
PezeshkiB, ThomasD, HarrisJ S Jr. Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators. Applied Physics Letters, 1990, 57(15): 1491-1493
CrossRef Google scholar
[8]
Bar-JosephI, SuchaG, MillerD A B, ChemlaD S, MillerB I, KorenU. Self-electro-optic effect device and modulation convertor with InGaAs/InP multiple quantum wells. Applied Physics Letters, 1988, 52(4): 51-53
[9]
GoossenK W, YanR H, CunninghamJ E, JanW Y. AlxGa1-xAs-AIAs quantum well surface-normal electro absorption modulators operating at visible wavelengths. Applied Physics Letters, 1991, 59(15): 1829-1831
CrossRef Google scholar
[10]
PezeshkiB, LordS M, BoykinT B, ShoopB L, HarrisJ S Jr. AlGaAs/AlAs QW Modulator for 6328 Å Operation. Electronics Letters, 1991, 27(21): 1971-1973
CrossRef Google scholar
[11]
KuoY H, LeeY K, GeY, RenS, RothJ E, KaminsT I, MillerD A B, HarrisJ S. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon.Nature, 2005, 437(7063): 1334-1336
CrossRef Pubmed Google scholar
[12]
KuoY H, LeeY K, GeY S, RenS, RothJ E, KaminsT I, MillerD A B, HarrisJ S. Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1503-1513
[13]
MillerD A B. Rationale and challenges for optical interconnects to electronic chips. In: Proceedings of the IEEE, 2000, 88(6): 728-749
CrossRef Google scholar
[14]
KibarO, Van BlerkomD A, FanC, EsenerS C. Power minimization and technology comparisons for digital free-space ptoelectronic interconnections. Journal of Lightwave Technology, 1999, 17(4): 546-555
CrossRef Google scholar
[15]
ChoH, KapurP, SaraswatK C. Power comparison between high speed electrical and optical interconnects for interchip communication. Journal of Lightwave Technology, 2004, 22(9): 2021-2033
CrossRef Google scholar
[16]
ParkJ S, KarunasiriR P G, WangK L. Observation of large Stark shift in GexSi1-x/Si multiple quantum wells. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 1990, 8(2): 217-220
CrossRef Google scholar
[17]
MacFarlaneG G, McLeanT P, QuarringtonJ E, RobertsV. Fine structure in the absorption-edge spectrum of Ge. Physical Review, 1957, 108(6): 1377-1383
CrossRef Google scholar
[18]
DashW C, NewmanR. Intrinsic optical absorption in single-crystal germanium and silicon at 77 K and 300 K. Physical Review, 1955, 99(4): 1151-1155
CrossRef Google scholar
[19]
KaneE O. Band structure of indium antimonide. Journal of Physics and Chemistry of Solids, 1957, 1(4): 249-261
CrossRef Google scholar

Acknowledgements

The authors would like to thank Dr. E. Mohammed and Ian Young of Intel for support and for useful discussions and HP Labs in Palo Alto for access to their high-speed measurements facilities.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(548 KB)

Accesses

Citations

Detail

Sections
Recommended

/