Spontaneous emission rate enhancement of nano-structured silicon by surface plasmon polariton

Xue FENG, Fang LIU, Yidong HUANG

PDF(670 KB)
PDF(670 KB)
Front. Optoelectron. ›› 2012, Vol. 5 ›› Issue (1) : 51-62. DOI: 10.1007/s12200-012-0185-x
REVIEW ARTICLE
REVIEW ARTICLE

Spontaneous emission rate enhancement of nano-structured silicon by surface plasmon polariton

Author information +
History +

Abstract

Surface plasmon polariton (SPP) is an attractive candidate to improve internal quantum efficiency (QE) of spontaneous emission (SE) from nano-structured silicon (Si) including nano-porous silicon (NP-Si) and silicon nanocrystal (Si-NC). Since the SPP resonant frequency of common metals, e.g., gold (Au), silver (Ag), copper (Cu), and aluminum (Al), is too high, the SPP resonance has to be engineered to match the luminescence from nano-structured Si. For this purpose, we have proposed and demonstrated three approaches including metal-rich Au(1-α)-SiO2(α) cermet SPP waveguide (WG), compound layer structure WG and metallic grating. In this paper, those approaches are reviewed and discussed. According to the calculated results, such three methods could effectively enhance SE rate from NP-Si or Si-NCs and show potential in developing high efficiency Si based light sources with electric pump.

Keywords

spontaneous emission (SE) / silicon nanocrystal (Si-NC) / surface plasmon polariton (SPP) / Purcell effect

Cite this article

Download citation ▾
Xue FENG, Fang LIU, Yidong HUANG. Spontaneous emission rate enhancement of nano-structured silicon by surface plasmon polariton. Front Optoelec, 2012, 5(1): 51‒62 https://doi.org/10.1007/s12200-012-0185-x

References

[1]
Daldosso N, Pavesi L. Nanosilicon photonics. Laser & Photonics Reviews, 2009, 3(6): 508–534
CrossRef Google scholar
[2]
Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters, 1990, 57(10): 1046–1048
CrossRef Google scholar
[3]
Qin G G, Li Y J. Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide. Physical Review B: Condensed Matter and Materials Physics, 2003, 68(8): 085309
CrossRef Google scholar
[4]
Franzò G, Priolo F, Coffa S, Polman A, Carnera A. Room temperature electroluminescence from Er-doped crystalline silicon. Applied Physics Letters, 1994, 64(17): 2235–2237
CrossRef Google scholar
[5]
Rong H S, Liu A, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M. An all-silicon Raman laser. Nature, 2005, 433(7023): 292–294
CrossRef Pubmed Google scholar
[6]
Kovalev D, Heckler H, Ben-Chorin M, Polisski G, Schwartzkopff M, Koch F. Breakdown of the k-conservation rule in Si nanocrystals. Physical Review Letters, 1998, 81(13): 2803–2806
CrossRef Google scholar
[7]
Godefroo S, Hayne M, Jivanescu M, Stesmans A, Zacharias M, Lebedev O I, Van Tendeloo G, Moshchalkov V V. Classification and control of the origin of photoluminescence from Si nanocrystals. Nature Nanotechnology, 2008, 3(3): 174–178
CrossRef Pubmed Google scholar
[8]
Bianucci P, Rodríguez J R, Clements C M, Veinot J G C, Meldrum A. Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers. Journal of Applied Physics, 2009, 105(2): 023108
CrossRef Google scholar
[9]
Wilson W L, Szajowski P F, Brus L E. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science, 1993, 262(5137): 1242–1244
CrossRef Pubmed Google scholar
[10]
Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Optical gain in silicon nanocrystals. Nature, 2000, 408(6811): 440–444
CrossRef Pubmed Google scholar
[11]
Gontijo I, Boroditsky M, Yablonovitch E, Keller S, Mishra U, DenBaars S. Coupling of InGaN quantum-well photoluminescence to silver surface plasmons. Physical Review B: Condensed Matter and Materials Physics, 1999, 60(16): 11564–11567
CrossRef Google scholar
[12]
Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Materials, 2004, 3(9): 601–605
CrossRef Pubmed Google scholar
[13]
Sun G, Khurgin J B, Soref R A. Practicable enhancement of spontaneous emission using surface plasmons. Applied Physics Letters, 2007, 90(11): 111107
CrossRef Google scholar
[14]
Khurgin J B, Sun G, Soref R A. Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit. Journal of the Optical Society of America B, Optical Physics, 2007, 24(8): 1968–1980
CrossRef Google scholar
[15]
Lai C W, Au J, Ong H C. Surface-plasmon-mediated emission from metal-capped ZnO thin film. Applied Physics Letters, 2005, 86(25): 251105
CrossRef Google scholar
[16]
Purcell E M. Spontaneous emission probabilities at radio frequencies. Physical Review, 1946, 69(1946): 681
[17]
Hu X L, Huang Y D, Zhang W, Peng J D. Dominating radiative recombination in a nanoporous silicon layer with a metal-rich Au(1-α)-SiO2(α) cermet waveguide. Applied Physics Letters, 2006, 89(8): 081112
CrossRef Google scholar
[18]
Tang X, Wang Y X, Ke W W, Feng X, Huang Y D, Peng J D. Internal quantum efficiency enhancement of silicon nanocrystals using doublelayer Au-rich cermet films. Optics Communications, 2010, 283(13): 2754–2757
CrossRef Google scholar
[19]
Tang X, Huang Y D, Wang Y, Zhang W, Peng J. Tunable surface plasmons for emission enhancement of silicon nanocrystals using Ag-poor cermet layer. Applied Physics Letters, 2008, 92(25): 251116
CrossRef Google scholar
[20]
Feng X, Liu F, Huang Y D. Calculated plasmonic enhancement of spontaneous emission from silicon nanocrystals with metallic gratings. Optics Communications, 2010, 283(13): 2758–2761
CrossRef Google scholar
[21]
Feng X, Liu F, Huang Y D. Spontaneous emission rate enhancement of silicon nanocrystals by plasmonic band gap on copper grating. Journal of Lightwave Technology, 2010, 28(9): 1420–1430
CrossRef Google scholar
[22]
Zayatsa A V, Smolyaninovb I I, Maradudinc A A. Nano-optics of surface plasmon polaritons. Physics Reports, 2005, 408(3-4): 131–314
CrossRef Google scholar
[23]
Spanier J E, Herman I P. Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films. Physical Review B: Condensed Matter, 2000, 61(15): 10437–10450
CrossRef Google scholar
[24]
Barnes W L, Kitson S C, Preist T W, Sambles J R. Photonic surfaces for surface-plasmon Polaritons. Journal of the Optical Society of America A, 1997, 14(7): 1654–1661
CrossRef Google scholar
[25]
Chandezon J, Dupuis M T, Cornet G, Maystre D. Multicoated gratings: a differential formalism application in the entire optical region. Journal of the Optical Society of America, 1982, 72(7): 839–846
CrossRef Google scholar
[26]
Feng X, Ke W W, Tang X, Huang Y D, Zhang W, Peng J D. Numerical solution of surface plasmon polariton mode propagating on spatially periodic metal-dielectric interface. Journal of the Optical Society of America B, 2009, 26(12): B11–B20
CrossRef Google scholar
[27]
Barnes W L, Preist T W, Kitson S C, Sambles J R. Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Physical Review B: Condensed Matter and Materials Physics, 1996, 54(9): 6227–6244
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2011CBA00600 and 2007CB307004) and the National Natural Science Foundation of China (Grant Nos. 60877023, 61036010, 61036011, and 61107050). The authors would like to thank Xuan Tang, Weiwei Ke, Wei Zhang and Jiangde Peng for their valuable discussions and helpful comments.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(670 KB)

Accesses

Citations

Detail

Sections
Recommended

/