Spontaneous emission rate enhancement of nano-structured silicon by surface plasmon polariton
Xue FENG, Fang LIU, Yidong HUANG
Spontaneous emission rate enhancement of nano-structured silicon by surface plasmon polariton
Surface plasmon polariton (SPP) is an attractive candidate to improve internal quantum efficiency (QE) of spontaneous emission (SE) from nano-structured silicon (Si) including nano-porous silicon (NP-Si) and silicon nanocrystal (Si-NC). Since the SPP resonant frequency of common metals, e.g., gold (Au), silver (Ag), copper (Cu), and aluminum (Al), is too high, the SPP resonance has to be engineered to match the luminescence from nano-structured Si. For this purpose, we have proposed and demonstrated three approaches including metal-rich Au(1-α)-SiO2(α) cermet SPP waveguide (WG), compound layer structure WG and metallic grating. In this paper, those approaches are reviewed and discussed. According to the calculated results, such three methods could effectively enhance SE rate from NP-Si or Si-NCs and show potential in developing high efficiency Si based light sources with electric pump.
spontaneous emission (SE) / silicon nanocrystal (Si-NC) / surface plasmon polariton (SPP) / Purcell effect
[1] |
Daldosso N, Pavesi L. Nanosilicon photonics. Laser & Photonics Reviews, 2009, 3(6): 508–534
CrossRef
Google scholar
|
[2] |
Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters, 1990, 57(10): 1046–1048
CrossRef
Google scholar
|
[3] |
Qin G G, Li Y J. Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide. Physical Review B: Condensed Matter and Materials Physics, 2003, 68(8): 085309
CrossRef
Google scholar
|
[4] |
Franzò G, Priolo F, Coffa S, Polman A, Carnera A. Room temperature electroluminescence from Er-doped crystalline silicon. Applied Physics Letters, 1994, 64(17): 2235–2237
CrossRef
Google scholar
|
[5] |
Rong H S, Liu A, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M. An all-silicon Raman laser. Nature, 2005, 433(7023): 292–294
CrossRef
Pubmed
Google scholar
|
[6] |
Kovalev D, Heckler H, Ben-Chorin M, Polisski G, Schwartzkopff M, Koch F. Breakdown of the k-conservation rule in Si nanocrystals. Physical Review Letters, 1998, 81(13): 2803–2806
CrossRef
Google scholar
|
[7] |
Godefroo S, Hayne M, Jivanescu M, Stesmans A, Zacharias M, Lebedev O I, Van Tendeloo G, Moshchalkov V V. Classification and control of the origin of photoluminescence from Si nanocrystals. Nature Nanotechnology, 2008, 3(3): 174–178
CrossRef
Pubmed
Google scholar
|
[8] |
Bianucci P, Rodríguez J R, Clements C M, Veinot J G C, Meldrum A. Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers. Journal of Applied Physics, 2009, 105(2): 023108
CrossRef
Google scholar
|
[9] |
Wilson W L, Szajowski P F, Brus L E. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science, 1993, 262(5137): 1242–1244
CrossRef
Pubmed
Google scholar
|
[10] |
Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Optical gain in silicon nanocrystals. Nature, 2000, 408(6811): 440–444
CrossRef
Pubmed
Google scholar
|
[11] |
Gontijo I, Boroditsky M, Yablonovitch E, Keller S, Mishra U, DenBaars S. Coupling of InGaN quantum-well photoluminescence to silver surface plasmons. Physical Review B: Condensed Matter and Materials Physics, 1999, 60(16): 11564–11567
CrossRef
Google scholar
|
[12] |
Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Materials, 2004, 3(9): 601–605
CrossRef
Pubmed
Google scholar
|
[13] |
Sun G, Khurgin J B, Soref R A. Practicable enhancement of spontaneous emission using surface plasmons. Applied Physics Letters, 2007, 90(11): 111107
CrossRef
Google scholar
|
[14] |
Khurgin J B, Sun G, Soref R A. Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit. Journal of the Optical Society of America B, Optical Physics, 2007, 24(8): 1968–1980
CrossRef
Google scholar
|
[15] |
Lai C W, Au J, Ong H C. Surface-plasmon-mediated emission from metal-capped ZnO thin film. Applied Physics Letters, 2005, 86(25): 251105
CrossRef
Google scholar
|
[16] |
Purcell E M. Spontaneous emission probabilities at radio frequencies. Physical Review, 1946, 69(1946): 681
|
[17] |
Hu X L, Huang Y D, Zhang W, Peng J D. Dominating radiative recombination in a nanoporous silicon layer with a metal-rich Au(1-α)-SiO2(α) cermet waveguide. Applied Physics Letters, 2006, 89(8): 081112
CrossRef
Google scholar
|
[18] |
Tang X, Wang Y X, Ke W W, Feng X, Huang Y D, Peng J D. Internal quantum efficiency enhancement of silicon nanocrystals using doublelayer Au-rich cermet films. Optics Communications, 2010, 283(13): 2754–2757
CrossRef
Google scholar
|
[19] |
Tang X, Huang Y D, Wang Y, Zhang W, Peng J. Tunable surface plasmons for emission enhancement of silicon nanocrystals using Ag-poor cermet layer. Applied Physics Letters, 2008, 92(25): 251116
CrossRef
Google scholar
|
[20] |
Feng X, Liu F, Huang Y D. Calculated plasmonic enhancement of spontaneous emission from silicon nanocrystals with metallic gratings. Optics Communications, 2010, 283(13): 2758–2761
CrossRef
Google scholar
|
[21] |
Feng X, Liu F, Huang Y D. Spontaneous emission rate enhancement of silicon nanocrystals by plasmonic band gap on copper grating. Journal of Lightwave Technology, 2010, 28(9): 1420–1430
CrossRef
Google scholar
|
[22] |
Zayatsa A V, Smolyaninovb I I, Maradudinc A A. Nano-optics of surface plasmon polaritons. Physics Reports, 2005, 408(3-4): 131–314
CrossRef
Google scholar
|
[23] |
Spanier J E, Herman I P. Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films. Physical Review B: Condensed Matter, 2000, 61(15): 10437–10450
CrossRef
Google scholar
|
[24] |
Barnes W L, Kitson S C, Preist T W, Sambles J R. Photonic surfaces for surface-plasmon Polaritons. Journal of the Optical Society of America A, 1997, 14(7): 1654–1661
CrossRef
Google scholar
|
[25] |
Chandezon J, Dupuis M T, Cornet G, Maystre D. Multicoated gratings: a differential formalism application in the entire optical region. Journal of the Optical Society of America, 1982, 72(7): 839–846
CrossRef
Google scholar
|
[26] |
Feng X, Ke W W, Tang X, Huang Y D, Zhang W, Peng J D. Numerical solution of surface plasmon polariton mode propagating on spatially periodic metal-dielectric interface. Journal of the Optical Society of America B, 2009, 26(12): B11–B20
CrossRef
Google scholar
|
[27] |
Barnes W L, Preist T W, Kitson S C, Sambles J R. Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Physical Review B: Condensed Matter and Materials Physics, 1996, 54(9): 6227–6244
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |