Effect of dipole location on profile properties of symmetric surface plasmon polariton mode in Au/Al2O3/Au waveguide
Gongli XIAO, Xiang JI, Linfei GAO, Xingjun WANG, Zhiping ZHOU
Effect of dipole location on profile properties of symmetric surface plasmon polariton mode in Au/Al2O3/Au waveguide
This study uses a dipole embedded in Al2O3 layer to excite a symmetric surface plasmon polariton (SPP) mode in Au/Al2O3/Au waveguide to investigate its profile properties by using finite-difference time-domain (FDTD) method. The excited dipole decay radiatively direct near-field coupling to SPP mode owing to thin Al2O3 layer of 100 nm. The effects of electric and magnetic field intensity profiles and decay length have been considered and characterized. It is found that dipole location is an important factor to influence the horizontal and vertical profile properties of symmetric SPP mode in Au/Al2O3/Au waveguide. The amplitudes of electric and magnetic field intensity and the wavelengths of metal-insulator-metal (MIM) SPP resonance mode can be tuned by varying dipole location. The horizontal and vertical decay lengths are 19 and 24 nm, respectively. It is expected that the Au/Al2O3/Au waveguide structure is very useful for the practical applications of designing a SPP source.
waveguide / surface plasmon polariton (SPP) / profile properties
[1] |
Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Berlin: Springer, 1988
|
[2] |
Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424(6950): 824-830
CrossRef
Pubmed
Google scholar
|
[3] |
Hu F F, Yi H X, Zhou Z P. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Optics Letters, 2011, 36(8): 1500-1502
CrossRef
Pubmed
Google scholar
|
[4] |
Hossieni A, Massoud Y H. A low-loss metal-insulator-metal plasmonic bragg reflector. Optics Express, 2006, 14(23): 11318-11323
CrossRef
Pubmed
Google scholar
|
[5] |
Hu F F, Yi H X, Zhou Z P. Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Optics Express, 2011, 19(6): 4848-4855
CrossRef
Pubmed
Google scholar
|
[6] |
Tanaka K, Tanaka M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Applied Physics Letters, 2003, 82(8): 1158-1160
CrossRef
Google scholar
|
[7] |
Liu L, Han Z, He S. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645-6650
CrossRef
Pubmed
Google scholar
|
[8] |
Dionne J A, Lezec H J, Atwater H A. Highly confined photon transport in subwavelength metallic slot waveguides. Nano Letters, 2006, 6(9): 1928-1932
CrossRef
Pubmed
Google scholar
|
[9] |
Chen L, Shakya J, Lipson M. Subwavelength confinement in an integrated metal slot waveguide on silicon. Optics Letters, 2006, 31(14): 2133-2135
CrossRef
Pubmed
Google scholar
|
[10] |
Verhagen E, Dionne J A, Kuipers L K, Atwater H A, Polman A. Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides. Nano Letters, 2008, 8(9): 2925-2929
CrossRef
Pubmed
Google scholar
|
[11] |
Dionne J A, Sweatlock L A, Atwater H A, Polman A. Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(3): 035407
CrossRef
Google scholar
|
[12] |
Yun B F, Hu G H, Cui Y P. Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide. Journal of Physics D, Applied Physics, 2010, 43(38): 385102
CrossRef
Google scholar
|
[13] |
Hryciw A, Jun Y C, Brongersma M L. Plasmonics: electrifying plasmonics on silicon. Nature Materials, 2010, 9(1): 3-4
CrossRef
Pubmed
Google scholar
|
[14] |
Miyazaki H T, Kurokawa Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Physical Review Letters, 2006, 96(9): 097401
CrossRef
Pubmed
Google scholar
|
[15] |
Zhou J, Hu M, Zhang Y X, Zhang P, Liu W H, Liu S G. Numerical analysis of electron-induced surface plasmon excitation using the FDTD method. Journal of Optics, 2011, 13(3): 035003
CrossRef
Google scholar
|
[16] |
Babuty A, Bousseksou A, Tetienne J P, Doyen I M, Sirtori C, Beaudoin G, Sagnes I, De Wilde Y, Colombelli R. Semiconductor surface plasmon sources. Physical Review Letters, 2010, 104(22): 226806
CrossRef
Pubmed
Google scholar
|
[17] |
Koller D M, Hohenau A, Ditlbacher H, Galler N, Reil F, Aussenegg F R, Leitner A, List E J W, Krenn J R. Organic plasmon-emitting diode. Nature Photonics, 2008, 2(11): 684-687
CrossRef
Google scholar
|
[18] |
Walters R J, van Loon R V A, Brunets I, Schmitz J, Polman A. A silicon-based electrical source of surface Plasmon polaritons. Nature Materials, 2010, 9(1): 21-25
|
[19] |
Economou E N. Surface plasmons in thin films. Physical Review, 1969, 182(2): 539-554
CrossRef
Google scholar
|
[20] |
Johnson P, Christy R. Optical constants of the noble metals. Physical Review B: Condensed Matter and Materials Physics, 1972, 6(12): 4370-4379
CrossRef
Google scholar
|
[21] |
Park J, Kim H, Lee I M, Kim S, Jung J, Lee B. Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity. Optics Express, 2008, 16(21): 16903-16915
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |