High-speed, compact silicon and hybrid plasmonic waveguides for signal processing

Yikai SU, Gan ZHOU, Fei LI, Tao WANG

PDF(328 KB)
PDF(328 KB)
Front. Optoelectron. ›› DOI: 10.1007/s12200-011-0218-x
RESEARCH ARTICLE
RESEARCH ARTICLE

High-speed, compact silicon and hybrid plasmonic waveguides for signal processing

Author information +
History +

Abstract

All-optical circuits for signal processing could be a promising solution to overcome the speed bottleneck of electronics. For the photonics industry, silicon becomes a competitive material of choice in the field of integrated optics for designing and implementing high-speed and compact photonic devices. To further increase the integration density, it is a critical challenge to manipulate light on scales much smaller than the wavelength for the dielectric waveguides due to the diffraction limitation. Surface plasmon-polaritons (SPPs), which break the diffraction limitation, are receiving increasing attentions in recent years. This paper compares the advantages and disadvantages between electronic devices and optical devices taking differentiator as an example, and proposes an optical parametric amplifier (OPA) using silicon-based hybrid plasmonic waveguide.

Keywords

silicon based / surface plasmons / microring resonator / differentiator / optical parametric amplifier (OPA)

Cite this article

Download citation ▾
Yikai SU, Gan ZHOU, Fei LI, Tao WANG. High-speed, compact silicon and hybrid plasmonic waveguides for signal processing. Front Optoelec Chin, https://doi.org/10.1007/s12200-011-0218-x

References

[1]
Koehl S. Silicon photonics could revolutionize future servers and networks. Converge! Network Digest, 2005, http://www.convergedigest.com/blueprints/ttp03/bp1.asp?ID=242&ctgy=Market
[2]
Reed G T, Mashanovich G, Gardes F Y, Thomson D J. Silicon optical modulators. Nature Photonics, 2010, 4(8): 518–526
[3]
Reed G T. Device physics: the optical age of silicon. Nature, 2004, 427(6975): 595–596
[4]
Liu F F, Li Q, Zhang Z Y, Qiu M, Su Y K. Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect. IEEE Journal on Selected Topics in Quantum Electronics, 2008, 14(3): 706–712
CrossRef Google scholar
[5]
Liu F F, Li Q, Zhang Z Y, Qiu M, Su Y K. Ultra-compact mode-split silicon microring resonator for format conversion from NRZ to FSK. Proceedings of SPIE, 2008, 7135: 713537
[6]
Li Q, Ye T, Lu Y Y, Zhang Z Y, Qiu M, Su Y K. All optical NRZ-to-AMI conversion using linear filtering effect of silicon microring resonator. Chinese Optics Letters, 2009, 7(1): 12–14
[7]
Liu F F, Wang T, Zhang Z Y, Qiu M, Su Y K. On-chip photonic generation of ultra-wideband monocycle pulses. Electronics Letters, 2009, 45(24): 1247–1249
CrossRef Google scholar
[8]
Liu F F, Wang T, Qiang L, Ye T, Zhang Z Y, Qiu M, Su Y K. Compact optical temporal differentiator based on silicon microring resonator. Optics Express, 2008, 16(20): 15880–15886
CrossRef Pubmed Google scholar
[9]
Ferrera M, Park Y, Razzari L, Little B E, Chu S T, Morandotti R, Moss D J, Azaña J. On-chip CMOS-compatible all-optical integrator. Nature Communications, 2010, 1(29): 1–5
CrossRef Google scholar
[10]
Pile D F P, Ogawa T, Gramotnev D K, Okamoto T, Haraguchi M, Fukui M, Matsuo S. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Applied Physics Letters, 2005, 87(6): 061106
[11]
Moreno E, VidalF J G, Rodrigo S J, Moreno L M, Bozhevolnyi S I.Channel plasmon-polaritons: modal shape, dispersion, and losses. Optics Letters, 2006, 31(23): 3447–3449
[12]
Veronis G, Fan S H. Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Optics Letters, 2005, 30(24): 3359–3361
[13]
Berini P. Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structure. Physical Review B: Condensed Matter and Materials Physics, 2001, 63(12): 125417
CrossRef Google scholar
[14]
Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic wavguide for subwavelength confinement and long range propagation. Nature Photonics, 2008, 2(8): 496–500
[15]
Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653
CrossRef Pubmed Google scholar
[16]
Zhou G, Wang T, Su Y K. Design of Plasmon waveguide with strong field confinement and low loss for nonlinearity enhancement. Proceedings of SPIE, 2010, 7987: 79870A
[17]
Zhou G, Wang T, Su Y K. Wide broadband optical parametric amplifier in ultra-compact plasmonic waveguide. In: Proceedings of Asia Communications and Photonics Conference and Exhibition. 2010, SuK4
[18]
Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics, 2010, 4(2): 83–91
[19]
Li Z, Zhang S, Vazquez J M, Lou Y, Khoe G D, Dorren H J S, Lenstra D. Ultrafast optical differentiators based on asymmetric Mach-Zehnder interferometer. In: Proceedings of Symposium IEEE/LEOS. Benelux Chapter, 2006, 173–176
[20]
Slavík R, Park Y W, Kulishov M, Azaña J. Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings. Optics Letters, 2009, 34(20): 3116–3118
CrossRef Pubmed Google scholar
[21]
Xu J, Zhang X L, Dong J J, Liu D M, Huang D X. High-speed all-optical differentiator based on a semiconductor optical amplifier and an optical filter. Optics Letters, 2007, 32(13): 1872–1874
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61077052).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(328 KB)

Accesses

Citations

Detail

Sections
Recommended

/