Quantum dot photoelectrochemical solar cells based on TiO2-SrTiO3 heterostructure nanotube array scaffolds
Jun ZHANG, Chengchun TANG
Quantum dot photoelectrochemical solar cells based on TiO2-SrTiO3 heterostructure nanotube array scaffolds
Titania-Strontium titanate (TiO2-SrTiO3) nanotube array with heterostructure has been demonstrated as an efficient scaffold applied to quantum dot photoelectrochemical solar cells. Quantum dot CdS serviced as solar light absorbent is chosen as an example to illustrate superior performance and deposited on scaffolds by successive ionic layer adsorption and reaction (SILAR) technique. The photoelectrochemical performance of such solar cell is strongly dependent on the structure of heterostructured scaffolds. Only well-dispersed SrTiO3 nanocrystallites on TiO2 could improve the overall conversion efficiency. Transient absorption spectra and photoelectrochemical measurements show that the formation of SrTiO3 energy gradient between TiO2 and electrolyte slows down the rate of electronic injection from 19.3 × 108 to 6.30 × 108 s-1, while it greatly increases electronic collection efficiency via reduced charge recombination. Cadmium sulfide (CdS) quantum dots used to decorate TiO2-SrTiO3 (1 h hydrothermal treatment) electrode exhibits superior photoelectrochemical performance with nearly 70% increase in external quantum efficiency at 460 nm and also in overall cell conversion efficiency. The photostability and high efficiency properties of TiO2-SrTiO3 composites would enable its practical application in solar energy conversion devices.
quantum dot / heterostructure / nanotube array / photoelectrochemistry / TiO2
[1] |
Kamat P V. Quantum dot solar cells. semiconductor nanocrystals as light harvesters. Journal of Physical Chemistry C, 2008, 112(48): 18737–18753
|
[2] |
Nozik A. Quantum dot solar cells. Journal of Physics of the Earth, 2002, 14(1–2): 115–120
|
[3] |
Robel I, Subramanian V, Kuno M, Kamat P V. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Journal of the American Chemical Society, 2006, 128(7): 2385–2393
CrossRef
Pubmed
Google scholar
|
[4] |
Yu P, Zhu K, Norman A G, Ferrere S, Frank A J, Nozik A J. Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J Phys Chem B, 2006, 110(50): 25451–25454
CrossRef
Pubmed
Google scholar
|
[5] |
Luther J M, Law M, Beard M C, Song Q, Reese M O, Ellingson R J, Nozik A J. Schottky solar cells based on colloidal nanocrystal films. Nano Letters, 2008, 8(10): 3488–3492
CrossRef
Pubmed
Google scholar
|
[6] |
Weiss E A, Porter V J, Chiechi R C, Geyer S M, Bell D C, Bawendi M G, Whitesides G M. The use of size-selective excitation to study photocurrent through junctions containing single-size and multi-size arrays of colloidal CdSe quantum dots. Journal of the American Chemical Society, 2008, 130(1): 83–92
CrossRef
Pubmed
Google scholar
|
[7] |
Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters. Journal of Applied Physics, 1982, 53(5): 3813–3818
CrossRef
Google scholar
|
[8] |
Schaller R D, Klimov V I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Physical Review Letters, 2004, 92(18): 186601
CrossRef
Pubmed
Google scholar
|
[9] |
Schaller R D, Agranovich V M, Klimov V C. High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nature Physics, 2005, 1(3): 189–194
CrossRef
Google scholar
|
[10] |
Luther J M, Beard M C, Song Q, Law M, Ellingson R J, Nozik A J. Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Letters, 2007, 7(6): 1779–1784
CrossRef
Pubmed
Google scholar
|
[11] |
Niitsoo O, Sarkar S K, Pejoux C, Ruhle S, Cahen D, Hodes G J. Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. Photochemistry and Photobiology A, 2006, 181(2–3): 306–313
CrossRef
Google scholar
|
[12] |
Diguna L J, Shen Q, Kobayashi J, Toyoda T. High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Applied Physics Letters, 2007, 91(2): 023116
CrossRef
Google scholar
|
[13] |
Hodes G. Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. Journal of Physical Chemistry C, 2008, 112(46): 17778–17787
CrossRef
Google scholar
|
[14] |
Lee Y L, Lo Y S. Highly efficient quantum-dot-sensitized solar cell based on Co-sensitization of CdS/CdSe. Advanced Functional Materials, 2009, 19(4): 604–609
CrossRef
Google scholar
|
[15] |
Baker D R, Kamat P V. Photosensitization of TiO2 nanostructures with CdS quantum dots. particulate versus tubular support architectures. Advanced Functional Materials, 2009, 19(5): 805–811
CrossRef
Google scholar
|
[16] |
Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. Journal of the American Chemical Society, 2008, 130(4): 1124–1125
CrossRef
Pubmed
Google scholar
|
[17] |
Robel I, Kuno M, Kamat P V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. Journal of the American Chemical Society, 2007, 129(14): 4136–4137
CrossRef
Pubmed
Google scholar
|
[18] |
Kongkanand A, Tvrdy K, Takechi K, Kuno M K, Kamat P V. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. Journal of the American Chemical Society, 2008, 130(12): 4007–4015
CrossRef
Pubmed
Google scholar
|
[19] |
Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R, Norris D J, Aydil E S. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Letters, 2007, 7(6): 1793–1798
CrossRef
Pubmed
Google scholar
|
[20] |
Lee H J, Yum J H, Leventis H C, Zakeeruddin S M, Haque S A, Chen P, Seok S I, Gratzel M, Nazeeruddin M K. CdSe Quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun Intensity. Journal of Physical Chemistry C, 2008, 112(30): 11600–11608
CrossRef
Google scholar
|
[21] |
Zaban A, Micic O I, Gregg B A, Nozik A J. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir, 1998, 14(12): 3153–3156
CrossRef
Google scholar
|
[22] |
Plass R, Pelet S, Krueger J, Gratzel M, Bach U. Quantum dot sensitization of organic-inorganic hybrid solar cells. Journal of Physical Chemistry B, 2002, 106(31): 7578–7580
CrossRef
Google scholar
|
[23] |
Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4(6): 455–459
CrossRef
Pubmed
Google scholar
|
[24] |
Martinson A B F, Elam J W, Hupp J T, Pellin M J. ZnO nanotube based dye-sensitized solar cells. Nano Letters, 2007, 7(8): 2183–2187
CrossRef
Pubmed
Google scholar
|
[25] |
Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters, 2006, 6(2): 215–218
CrossRef
Pubmed
Google scholar
|
[26] |
Zhu K, Neale N R, Miedaner A, Frank A J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters, 2007, 7(1): 69–74
CrossRef
Pubmed
Google scholar
|
[27] |
Jennings J R, Ghicov A, Peter L M, Schmuki P, Walker A B. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. Journal of the American Chemical Society, 2008, 130(40): 13364–13372
CrossRef
Pubmed
Google scholar
|
[28] |
Shankar K, Basham J I, Allam N K, Varghese O K, Mor G K, Feng X, Paulose M, Seabold J A, Choi K S, Grimes C A. Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry. Journal of Physical Chemistry C, 2009, 113(16): 6327–6359
CrossRef
Google scholar
|
[29] |
Diamant Y, Chen S G, Melamed O, Zaban A. Core-shell nanoporous electrode for dye sensitized solar cells:the effect of the SrTiO3 shell on the electronic properties of the TiO2 core. Journal of Physical Chemistry B, 2003, 107(9): 1977–1981
CrossRef
Google scholar
|
[30] |
Diamant Y, Chappel S, Chen S G, Melamed O, Zaban A. Core-shell nanoporous electrode for dye sensitized solar cells: the effect of shell characteristics on the electronic properties of the electrode. Coordination Chemistry Reviews, 2004, 248(13–14): 1271–1276
CrossRef
Google scholar
|
[31] |
Bandaranayake K M P, Indika-Senevirathna M K, Prasad-Weligamuwa P M G M, Tennakone K. Dye-sensitized solar cells made from nanocrystalline TiO2 films coated with outer layers of different oxide materials. Coordination Chemistry Reviews, 2004, 248(13–14): 1277–1281
CrossRef
Google scholar
|
[32] |
Nasr C, Kamat P V, Hotchandani S.. Photoelectrochemistry of composite semiconductor thin films. II. Photosensitization of SnO2/TiO2 coupled system with a ruthenium polypyridyl complex. Journal of Physical Chemistry B, 1998, 102(49): 10047–10056
CrossRef
Google scholar
|
[33] |
Zaban A, Chen S G, Chappel S, Gregg B A. Bilayer nanoporous electrodes for dye sensitized solar cells. Chemical Communications, 2000, 14(22): 2231–2232
CrossRef
Google scholar
|
[34] |
Wang Z S, Huang C H, Huang Y Y, Hou Y J, Xie P H, Zhang B W, Cheng H M. A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chemistry of Materials, 2001, 13(2): 678–682
CrossRef
Google scholar
|
[35] |
Palomares E, Clifford J N, Haque S A, Lutz T, Durrant J R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. Journal of the American Chemical Society, 2003, 125(2): 475–482
CrossRef
Pubmed
Google scholar
|
[36] |
Law M, Greene L E, Radenovic A, Kuykendall T, Liphardt J, Yang P. ZnO-A2O3 and ZnO-TiO2 core-hell nanowire dye-sensitized solar cells. Journal of Physical Chemistry B, 2006, 110(45): 22652–22663
CrossRef
Google scholar
|
[37] |
Kang S H, Kim J Y, Kim Y, Kim H S, Sung Y E. Surface modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells. Journal of Physical Chemistry C, 2007, 111(26): 9614–9623
CrossRef
Google scholar
|
[38] |
Lee W, Kang S H, Kim J Y, Kolekar G B, Sung Y E, Han S H. TiO2 nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum-dot-sensitized solar cells. Nanotechnology, 2009, 20(33): 335706
CrossRef
Pubmed
Google scholar
|
[39] |
Zhang L, Cheng H, Zong R, Zhu Y. Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity. Journal of Physical Chemistry C, 2009, 113(6): 2368–2374
CrossRef
Google scholar
|
[40] |
Fujihira M, Ohishi N, Osa T. Photocell using covalently-bound dyes on semiconductor surfaces. Nature, 1977, 268(5617): 226–228
CrossRef
Google scholar
|
[41] |
Zhang J, Bang J H, Tang C, Kamat P V. Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano, 2010, 4(1): 387–395
CrossRef
Pubmed
Google scholar
|
[42] |
Zhang J, Tang C, Bang J H. CdS/TiO2-SrTiO3 heterostructure nanotube arrays for improved solar energy conversion efficiency. Electrochemistry Communications, 2010, 12(8): 1124–1128
CrossRef
Google scholar
|
[43] |
Nicolau Y F. Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process. Applications of Surface Science, 1985, 22–23(2): 1061–1074
CrossRef
Google scholar
|
[44] |
Likodimos V, Stergiopoulos T, Falaras P, Kunze J, Schmuki P. Phase composition, size, orientation, and antenna effects of self-assembled anodized titania nanotube arrays: a polarized micro-raman investigation. Journal of Physical Chemistry C, 2008, 112(33): 12687–12696
CrossRef
Google scholar
|
[45] |
Macák J M, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angewandte Chemie International Edition, 2005, 44(14): 2100–2102
CrossRef
Pubmed
Google scholar
|
[46] |
James D R, Liu Y S, de Mayo P, Ware W R. Distributions of fluorescence lifetimes: consequences for the photophysics of molecules adsorbed on surfaces. Chemical Physics Letters, 1985, 120(4–5): 460–465
CrossRef
Google scholar
|
/
〈 | 〉 |