Synthesis and photovoltaic property of pyrrole-based conjugated oligomer as organic dye for dye-sensitized solar cells
Qianqian LI, Wenjun WU, Aoshu ZHONG, Jianli HUA, Ming PENG, Jing HUANG, Jie SHI, He TIAN, Jingui QIN, Zhen LI
Synthesis and photovoltaic property of pyrrole-based conjugated oligomer as organic dye for dye-sensitized solar cells
A new pyrrole-based conjugated oligomer (P1) was obtained with phenyl-linked triphenylamine moieties as an isolation group. Little aggregations were observed whether oligomer P1 was absorbed on titanium dioxide (TiO2) surface or in solid state. Since the pyrrole-based moieties in donor-π-acceptor type was the core component of oligomer P1 for light absorption, the corresponding dye-sensitized solar cell (DSSC) demonstrated the efficiency of light-to-electrical conversion by 0.48%. Higher conversion efficiency could be achieved by tuning the size of the isolation groups and the structure of the donor-π-acceptor type dyes.
pyrrole / synthesis / dye sensitizer / oligomer
[1] |
Imahori H, Umeyama T, Ito S. Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Accounts of Chemical Research, 2009, 42(11): 1809–1818
CrossRef
Pubmed
Google scholar
|
[2] |
Grätzel M. Recent advances in sensitized mesoscopic solar cells. Accounts of Chemical Research, 2009, 42(11): 1788–1798
CrossRef
Pubmed
Google scholar
|
[3] |
Preat J, Jacquemin D, Perpète E A. Towards new efficient dye-sensitised solar cells. Energy & Environmental Science, 2010, 3(7): 891–904
CrossRef
Google scholar
|
[4] |
Ning Z, Fu Y, Tian H. Improvement of dye-sensitized solar cells: what we know and what we need to know. Energy & Environmental Science, 2010, 3(9): 1170–1181
CrossRef
Google scholar
|
[5] |
Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chemical Reviews, 2010, 110(11): 6595–6663
CrossRef
Pubmed
Google scholar
|
[6] |
Altobello S, Argazzi R, Caramori S, Contado C, Da Fré S, Rubino P, Choné C, Larramona G, Bignozzi C A. Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes. Journal of the American Chemical Society, 2005, 127(44): 15342–15343
CrossRef
Pubmed
Google scholar
|
[7] |
Wang P, Klein C, Humphry-Baker R, Zakeeruddin S M, Grätzel M. A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. Journal of the American Chemical Society, 2005, 127(3): 808–809
CrossRef
Pubmed
Google scholar
|
[8] |
Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin S M, Grätzel M. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. Journal of the American Chemical Society, 2008, 130(32): 10720–10728
CrossRef
Pubmed
Google scholar
|
[9] |
Bessho T, Yoneda E, Yum J H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Grätzel M. New paradigm in molecular engineering of sensitizers for solar cell applications. Journal of the American Chemical Society, 2009, 131(16): 5930–5934
CrossRef
Pubmed
Google scholar
|
[10] |
Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, Wang F, Pan C, Wang P. Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chemistry of Materials, 2010, 22(5): 1915–1925
CrossRef
Google scholar
|
[11] |
Qin H, Wenger S, Xu M, Gao F, Jing X, Wang P, Zakeeruddin S M, Grätzel M. An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells. Journal of the American Chemical Society, 2008, 130(29): 9202–9203
CrossRef
Pubmed
Google scholar
|
[12] |
Horiuchi T, Miura H, Sumioka K, Uchida S. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. Journal of the American Chemical Society, 2004, 126(39): 12218–12219
CrossRef
Pubmed
Google scholar
|
[13] |
Koumura N, Wang Z S, Mori S, Miyashita M, Suzuki E, Hara K. Alkyl-functionalized organic dyes for efficient molecular photovoltaics. Journal of the American Chemical Society, 2006, 128(44): 14256–14257
CrossRef
Pubmed
Google scholar
|
[14] |
Snaith H J, Petrozza A, Ito S, Miura H, Grätzel M. Charge generation and photovoltaic operation of solid-state dye-sensitized solar cells incorporating a high extinction coefficient indolene-based sensitizer. Advanced Functional Materials, 2009, 19(11): 1810–1818
CrossRef
Google scholar
|
[15] |
Li Q, Lu L, Zhong C, Huang J, Huang Q, Shi J, Jin X, Peng T, Qin J, Li Z. New pyrrole-based organic dyes for dye-sensitized solar cells: convenient syntheses and high efficiency.Chemistry-A European Journal, 2009, 15(38): 9664–9668
CrossRef
Pubmed
Google scholar
|
[16] |
Li Q, Lu L, Zhong C, Shi J, Huang Q, Jin X, Peng T, Qin J, Li Z. New indole-based metal-free organic dyes for dye-sensitized solar cells. Journal of Physical Chemistry B, 2009, 113(44): 14588–14595
CrossRef
Pubmed
Google scholar
|
[17] |
Li Q, Lu C, Zhu J, Fu E, Zhong C, Li S, Cui Y, Qin J, Li Z. Nonlinear optical chromophores with pyrrole moieties as the conjugated bridge: enhanced NLO effects and interesting optical behavior. Journal of Physical Chemistry B, 2008, 112(15): 4545–4551
CrossRef
Pubmed
Google scholar
|
[18] |
Lim E, Kim M, Lee J, Jung B J, Cho N S, Lee J, Do L M, Shim H K. Relationship between the liquid crystallinity and field-effect-transistor behavior of fluorene-thiophene-based conjugated copolymers. Journal of Polymer Science A: Polymer Chemistry, 2006, 44(16): 4709–4721
CrossRef
Google scholar
|
/
〈 | 〉 |