Conjugated dendritic oligothiophenes for solution-processed bulk heterojunction solar cells

Chang-Qi MA

PDF(780 KB)
PDF(780 KB)
Front. Optoelectron. ›› 2011, Vol. 4 ›› Issue (1) : 12-23. DOI: 10.1007/s12200-011-0206-1
REVIEW ARTICLE
REVIEW ARTICLE

Conjugated dendritic oligothiophenes for solution-processed bulk heterojunction solar cells

Author information +
History +

Abstract

This mini-review summarizes the recent achievements of developing conjugated dendritic oligothiophenes (DOT) for use in solution-processed bulk heterojunction (BHJ) solar cells. These DOTs are structurally defined molecules with relatively high molecular weight. Therefore, this novel class of thiophene based material possesses not only some advantages of oligomers, such as defined and monodispersed molecular structure, high chemical purity, but also some characteristics of polymers, for example, good solution-processability. In addition, the step-by-step approach of its synthesis allows precise functionalization of dendritic backbones with desired moieties, which is helpful to finely tune the optical and electronic properties of materials. Power conversion efficiencies (PCE) of BHJ solar cells were achieved up to 2.5% when functionalized thiophene dendrimers were used as electron donor and electron acceptor was a fullerene derivative. These results indicated that dendritic oligothiophenes are a novel class of the materials of electron donor for solution-processed organic solar cells.

Keywords

conjugated dendrimers / dendritic oligothiophenes (DOT) / organic semiconductors / bulk heterojunction (BHJ) solar cells

Cite this article

Download citation ▾
Chang-Qi MA. Conjugated dendritic oligothiophenes for solution-processed bulk heterojunction solar cells. Front Optoelec Chin, 2011, 4(1): 12‒23 https://doi.org/10.1007/s12200-011-0206-1

References

[1]
Thompson B C, Fréchet J M J. Polymer-fullerene composite solar cells. Angewandte Chemie International Edition, 2008, 47(1): 58–77
CrossRef Pubmed Google scholar
[2]
Brabec C J, Zerza G, Cerullo G, Silvestri S D, Luzzati S, Hummelen J C, Sariciftci S. Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chemical Physics Letters, 2001, 340(3-4): 232–236
CrossRef Google scholar
[3]
van Hal P A, Meskers S C J, Janssen R A J. Photoinduced energy and electron transfer in oligo(p-phenylene vinylene)-fullerene dyads. Applied Physics. A, Materials Science & Processing, 2004, 79(1): 41–46
CrossRef Google scholar
[4]
Beaupré S, Boudreault P L T, Leclerc M. Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives. Advanced Materials (Deerfield Beach, Fla.), 2010, 22(8): E6–E27
CrossRef Pubmed Google scholar
[5]
Moulé A J, Meerholz K. Morphology control in solution-processed bulk-heterojunction solar cell mixtures. Advanced Functional Materials, 2009, 19(19): 3028–3036
CrossRef Google scholar
[6]
Dennler G, Scharber M C, Brabec C J. Polymer-fullerene bulk-heterojunction solar cells. Advanced Materials (Deerfield Beach, Fla.), 2009, 21(13): 1323–1338
CrossRef Google scholar
[7]
Irwin M D, Bruce Buchholz D, Hains A W, Chang R P H, Marks T J. P-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(8): 2783–2787
CrossRef Google scholar
[8]
Boudreault P L T, Najari A, Leclerc M. Processable low-bandgap polymers for photovoltaic applications. Chemistry of Materials, 2011, 23(3): 456–469
[9]
Liang Y, Xu Z, Xia J, Tsai S T, Wu Y, Li G, Ray C, Yu L. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Advanced Materials (Deerfield Beach, Fla.), 2010, 22(20): E135–E138
CrossRef Pubmed Google scholar
[10]
Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics, 2009, 3(5): 297–302
CrossRef Google scholar
[11]
Chen H Y, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics, 2009, 3(11): 649–653
CrossRef Google scholar
[12]
Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials, 2007, 6(7): 497–500
CrossRef Pubmed Google scholar
[13]
Wienk M M, Turbiez M, Gilot J, Janssen R A J. Narrow-bandgap diketo-pyrrolo-pyrrole polymer solar cells: the effect of processing on the performanc. Advanced Materials (Deerfield Beach, Fla.), 2008, 20(13): 2556–2560
CrossRef Google scholar
[14]
Würthner F, Meerholz K. Systems chemistry approach in organic photovoltaics. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(31): 9366–9373
CrossRef Pubmed Google scholar
[15]
Silvestri F, Marrocchi A, Seri M, Kim C, Marks T J, Facchetti A, Taticchi A. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. Journal of the American Chemical Society, 2010, 132(25): 6108–6117
CrossRef Pubmed Google scholar
[16]
Sharma G D, Suresh P, Mikroyannidis J A, Stylianakis M M. Efficient bulk heterojunction devices based on phenylenevinylene small molecule and perylene–pyrene bisimide. Journal of Materials Chemistry, 2010, 20(3): 561–567
CrossRef Google scholar
[17]
Velusamy M, Huang J H, Hsu Y C, Chou H H, Ho K C, Wu P L, Chang W H, Lin J T, Chu C W. Dibenzo[f,h]thieno[3,4-b] quinoxaline-based small molecules for efficient bulk-heterojunction solar cells. Organic Letters, 2009, 11(21): 4898–4901
CrossRef Pubmed Google scholar
[18]
Shang H, Fan H, Shi Q, Li S, Li Y, Zhan X. Solution processable D-A-D molecules based on triphenylamine for efficient organic solar cells. Solar Energy Materials and Solar Cells, 2010, 94(3): 457–464
CrossRef Google scholar
[19]
Zhang W, Tse S C, Lu J, Tao Y, Wong M S. Solution processable donor–acceptor oligothiophenes for bulk-heterojunction solar cells. Journal of Materials Chemistry, 2010, 20(11): 2182–2189
CrossRef Google scholar
[20]
Matsuo Y, Sato Y, Niinomi T, Soga I, Tanaka H, Nakamura E. Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl[60]fullerene. Journal of the American Chemical Society, 2009, 131(44): 16048–16050
CrossRef Pubmed Google scholar
[21]
Bu L, Guo X, Yu B, Qu Y, Xie Z, Yan D, Geng Y, Wang F. Metal-molecule-metal junctions via pfpe assisted nanotransfer printing (ntp) onto self-assembled monolayers. Journal of the American Chemical Society, 2009, 131(37): 13242–13243
CrossRef Pubmed Google scholar
[22]
Tantiwiwat M, Tamayo A, Luu N, Dang X D, Nguyen T Q. Oligothiophene derivatives functionalized with a diketopyrrolopyrrolo core for solution-processed field effect transistors: effect of alkyl substituents and thermal annealing. Journal of Physical Chemistry C, 2008, 112(44): 17402–17407
CrossRef Google scholar
[23]
Walker B, Tamayo A B, Dang X D, Zalar P, Seo J H, Garcia A, Tantiwiwat M, Nguyen T Q. Flexible organic solar cells: nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells. Advanced Functional Materials, 2009, 19(19): 3063–3069
CrossRef Google scholar
[24]
Grayson S M, Fréchet J M J. Convergent dendrons and dendrimers: from synthesis to applications. Chemical Reviews, 2001, 101(12): 3819–3868
CrossRef Pubmed Google scholar
[25]
Lo S C, Burn P L. Development of dendrimers: macromolecules for use in organic light-emitting diodes and solar cells. Chemical Reviews, 2007, 107(4): 1097–1116
CrossRef Pubmed Google scholar
[26]
Kanibolotsky A L, Perepichka I F, Skabara P J. Review of star-shaped molecules, including truxenes. Chemical Society Reviews, 2010, 39(7): 2695–2728
CrossRef Pubmed Google scholar
[27]
Xia C, Fan X, Locklin J, Advincula R C. A first synthesis of thiophene dendrimers. Organic Letters, 2002, 4(12): 2067–2070
CrossRef Pubmed Google scholar
[28]
Xia C, Fan X, Locklin J, Advincula R C, Gies A, Nonidez W. Characterization, supramolecular assembly, and nanostructures of thiophene dendrimers. Journal of the American Chemical Society, 2004, 126(28): 8735–8743
CrossRef Pubmed Google scholar
[29]
Ma C Q, Mena-Osteritz E, Debaerdemaeker T, Wienk M M, Janssen R A J, Bäuerle P. Functionalized 3D oligothiophene dendrons and dendrimers-novel macromolecules for organic electronics. Angewandte Chemie International Edition, 2007, 46(10): 1679–1683
CrossRef Google scholar
[30]
Mishra A, Ma C Q, Janssen R A J, Bäuerle P. Shape-persistent oligothienylene-ethynylene-based dendrimers: synthesis, spectroscopy and electrochemical characterization. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(48): 13521–13534
Pubmed
[31]
Roncali J, Leriche P, Cravino A. From one- to three-dimensional organic semiconductors: in search of the organic silicon? Advanced Materials (Deerfield Beach, Fla.), 2007, 19(16): 2045–2060
CrossRef Google scholar
[32]
Mishra A, Ma C Q, Bäuerle P. Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. Chemical Reviews, 2009, 109(3): 1141–1276
CrossRef Pubmed Google scholar
[33]
Ma C Q, Fonrodona M, Schikora M C, Wienk M M, Janssen R A J, Bäuerle P. Solution-Processed Bulk-heterojunction solar cells based on monodisperse dendritic oligothiophenes. Advanced Functional Materials, 2008, 18(20): 3323–3331
CrossRef Google scholar
[34]
Mozer A J, Ma C Q, Wong W W H, Jones D, Bäuerle P, Wallace G G. The effect of molecule size and shape on free charge generation, transport and recombination in all-thiophene dendrimer:fullerene bulk heterojunctions. Organic Electronics, 2010, 11(4): 573–582
CrossRef Google scholar
[35]
Juška G, Arlauskas K, Viliũnas M, Kočka J. Extraction current transients: new method of study of charge transport in microcrystalline silicon. Physical Review Letters, 2000, 84(21): 4946–4949
CrossRef Pubmed Google scholar
[36]
Mozer A J, Sariciftci N S, Lutsen L, Vanderzande D, Österbacka R, Westerling M, Juska G. Charge transport and recombination in bulk heterojunction solar cells studied by the photo induced charge extraction by linearly increasing voltage technique. Applied Physics Letters, 2005, 86(11): 112104
CrossRef Google scholar
[37]
Schafferhans J, Baumann A, Deibel C, Dyakonov V. Trap distribution and the impact of oxygen-induced traps on the charge transport in poly(3-hexylthiophene). Applied Physics Letters, 2008, 93(9): 093303
CrossRef Google scholar
[38]
Mitchell W J, Kopidakis N, Rumbles G, Ginley D S, Shaheen S E. The synthesis and properties of solution processable phenyl cored thiophene dendrimers. Journal of Materials Chemistry, 2005, 15(42): 4518–4528
CrossRef Google scholar
[39]
Mitchell W J, Ferguson A J, Kose M E, Rupert B L, Ginley D S, Rumbles G, Shaheen S E, Kopidakis N. Structure-dependent photophysics of first-generation phenyl-cored thiophene dendrimers. Chemistry of Materials, 2009, 21(2): 287–297
CrossRef Google scholar
[40]
Kopidakis N, Mitchell W J, van de Lagemaat J, Ginley D S, Rumbles G, Shaheen S E, Rance W L. Bulk heterojunction organic photovoltaic devices based on phenyl-cored thiophene dendrimers. Applied Physics Letters, 2006, 89(10): 103524
CrossRef Google scholar
[41]
Köse M E, Mitchell W J, Kopidakis N, Chang C H, Shaheen S E, Kim K, Rumbles G. Theoretical studies on conjugated phenyl-cored thiophene dendrimers for photovoltaic applications. Journal of the American Chemical Society, 2007, 129(46): 14257–14270
CrossRef Pubmed Google scholar
[42]
Rupert B L, Mitchell W J, Ferguson A J, Kose M E, Rance W L, Rumbles G, Ginley D S, Shaheen S E, Kopidakis N. Low-bandgap thiophene dendrimers for improved light harvesting. Journal of Materials Chemistry, 2009, 19(30): 5311–5324
CrossRef Google scholar
[43]
Wong W W H, Ma C Q, Pisula W, Feng X, Jones D J, Müllen K, Janssen R A J, Bäuerle P, Holmes A B. Self-assembling thiophene dendrimers with a hexa-peri-hexabenzocoronene core-synthesis, characterization and performance in bulk heterojunction solar cells. Chemistry of Materials, 2010, 22(2): 457–466
CrossRef Google scholar
[44]
Wu J, Pisula W, Müllen K. Graphenes as potential material for electronics. Chemical Reviews, 2007, 107(3): 718–747
CrossRef Pubmed Google scholar
[45]
Kastler M, Pisula W, Wasserfallen D, Pakula T, Müllen K. Influence of alkyl substituents on the solution- and surface-organization of hexa-peri-hexabenzocoronenes. Journal of the American Chemical Society, 2005, 127(12): 4286–4296
CrossRef Pubmed Google scholar
[46]
Pisula W, Menon A, Stepputat M, Lieberwirth I, Kolb U, Tracz A, Sirringhaus H, Pakula T, Müllen K. A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzocoronene. Advanced Materials (Deerfield Beach, Fla.), 2005, 17(6): 684–689
CrossRef Google scholar
[47]
Mastalerz M, Fischer V, Ma C Q, Janssen R A J, Bäuerle P. Conjugated oligothienyl dendrimers based on a pyrazino[2,3-g]quinoxaline core. Organic Letters, 2009, 11(20): 4500–4503
CrossRef Pubmed Google scholar
[48]
Zhang F, Bijleveld J, Perzon J E, Tvingstedt K, Barrau S, Inganäs O, Andersson M R. High photovoltage achieved in low band gap polymer solar cells by adjusting energy levels of a polymer with the LUMOs of fullerene derivatives. Journal of Materials Chemistry, 2008, 18(45): 5468–5474
CrossRef Google scholar
[49]
Zoombelt A P, Fonrodona M, Turbiez G R M, Wienk M M, Janssen R A J. Synthesis and photovoltaic performance of a series of small band gap polymers. Journal of Materials Chemistry, 2009, 19(30): 5336–5339
CrossRef Google scholar
[50]
Cheng K F, Lai M H, Wang C F, Wu W C, Chen W C. New fluorene–pyrazino[2,3-g]quinoxaline-conjugated copolymers: Synthesis, optoelectronic properties, and electroluminescence characteristics. Journal of Applied Polymer Science, 2009, 112(4): 2094–2101
CrossRef Google scholar
[51]
Mishra A, Fischer M K R, Bäuerle P. Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angewandte Chemie International Edition, 2009, 48(14): 2474–2499
CrossRef Pubmed Google scholar
[52]
Bagnis D, Beverina L, Huang H, Silvestri F, Yao Y, Yan H, Pagani G A, Marks T J, Facchetti A. Marked alkyl- vs alkenyl-substitutent effects on squaraine dye solid-state structure, carrier mobility, and bulk-heterojunction solar cell efficiency. Journal of the American Chemical Society, 2010, 132(12): 4074–4075
CrossRef Pubmed Google scholar
[53]
Fischer M K R, Kaiser T E, Würthner F, Bäuerle P. Dendritic oligothiophene-perylene bisimide hybrids: synthesis, optical and electrochemical properties. Journal of Materials Chemistry, 2009, 19(8): 1129–1136
CrossRef Google scholar
[54]
Fischer M K R, López-Duarte I, Wienk M M, Martínez-Díaz M V, Janssen R A J, Bäuerle P, Torres T. Functionalized dendritic oligothiophenes: ruthenium phthalocyanine complexes and their application in bulk heterojunction solar cells. Journal of the American Chemical Society, 2009, 131(24): 8669–8676
CrossRef Pubmed Google scholar
[55]
Fischer M K R, Ma C Q, Janssen R A J, Debaerdemaeker T, Bäuerle P. Core-functionalized dendritic oligothiophenes—novel donor–acceptor systems. Journal of Materials Chemistry, 2009, 19(27): 4784–4790
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(780 KB)

Accesses

Citations

Detail

Sections
Recommended

/