Electrically tunable silicon plasmonic phase modulators with nano-scale optical confinement

Xiaomeng SUN, Linjie ZHOU, Xinwan LI, Jingya XIE, Jianping CHEN

PDF(264 KB)
PDF(264 KB)
Front. Optoelectron. ›› 2011, Vol. 4 ›› Issue (4) : 359-363. DOI: 10.1007/s12200-011-0176-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Electrically tunable silicon plasmonic phase modulators with nano-scale optical confinement

Author information +
History +

Abstract

Electrically tunable silicon (Si) plasmonic phase modulators with nano-scale optical confinement are presented and analyzed in this study. The modulation is realized based on two mechanisms: free carrier plasma dispersion effect in Si and high electro-optic effect in polymer. The phase modulators can be found potential applications in optical telecommunication and interconnect.

Keywords

surface plasmons / photonic integrated circuits / free carrier plasma dispersion effect / electro-optic effect

Cite this article

Download citation ▾
Xiaomeng SUN, Linjie ZHOU, Xinwan LI, Jingya XIE, Jianping CHEN. Electrically tunable silicon plasmonic phase modulators with nano-scale optical confinement. Front Optoelec Chin, 2011, 4(4): 359‒363 https://doi.org/10.1007/s12200-011-0176-3

References

[1]
Boardman A D. Electromagnetic Surface Modes. New York: Wiley, 1982
[2]
Agranovich VM, Mills DL. Surface polaritons: electromagnetic waves at surfaces and interfaces. Journal of the Optical Society of America B, Optical Physics, 1984, 1(3): 410
[3]
Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics, 2010, 4(2): 83-91
CrossRef Google scholar
[4]
Soref R, Bennett B. Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 1987, 23(1): 123-129
CrossRef Google scholar
[5]
Johnson P B, Christy R W. Optical constants of the noble metals. Physical Review B: Condensed Matter, 1972, 6(12): 4370-4379
CrossRef Google scholar
[6]
Wang G X, Tom B J, Michael H, Axel S. Design and fabrication of segmented, slotted waveguides for electro-optic modulation. Applied Physics Letters, 2007, 91(14): 143109
CrossRef Google scholar
[7]
Sze S M, Ng K K. Physics of Semiconductor Devices. 3rd ed. New York:Wiley, 2007
[8]
Xu Q F, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435(7040): 325-327
CrossRef Google scholar
[9]
Sun X M, Zhou L J, Li X W, Hong Z H, Chen J P. Design and analysis of a phase modulator based on ametal-polymer-silicon hybrid plasmonic waveguide. Applied Optics, 2011, 50(20): 3428-3434
CrossRef Google scholar
[10]
Baehr-Jones T, Penkov B, Huang J Q, Sullivan P, Davies J, Takayesu J, Luo J D, Kim T D, Dalton L, Jen A, Hochberg M, Scherer A. Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V. Applied Physics Letters, 2008, 92(16): 163303
CrossRef Google scholar
[11]
Kim T D, Kang J W, Luo J D, Jang S H, Ka J W, Tucker N, Benedict J B, Dalton L R, Gray T, Overney R M, Park D H, Herman W N, Jen A K Y. Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses. Journal of the American Chemical Society, 2007, 129(3): 488-489
CrossRef Google scholar
[12]
Brosi J M, Koos C, Andreani L C, Waldow M, Leuthold J, Freude W. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Optics Express, 2008, 16(6): 4177-4191
CrossRef Google scholar
[13]
Dalton L R. Organic electro-optic materials. Pure Applied Chem istry, 2004, 76(7-8): 1421-1433

Acknowledgments

This work was partially supported by the National Basic Research Program of China (973 program) (No. 2011CB301700), the National Natural Science Foundation of China (NSFC) (Grant Nos. 60877012, 61001074, 61007039), the Science and Technology Commission of Shanghai Municipality Project (STCSM Project) (Nos. 10DJ1400402, 09JC1408100).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(264 KB)

Accesses

Citations

Detail

Sections
Recommended

/