Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure

Yueyin SHAO, Yongqian WEI, Zhenghua WANG

PDF(259 KB)
PDF(259 KB)
Front. Optoelectron. ›› 2011, Vol. 4 ›› Issue (4) : 378-381. DOI: 10.1007/s12200-011-0171-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure

Author information +
History +

Abstract

Silicon nanowires (SiNWs) with tens of micrometer in length have been synthesized and modified with Ag nanoparticles, which were confirmed by X-ray diffractometer (XRD), scanning electron microscopy and transmission electron microscopy. The Ag/Si nanostructure was employed to detect inorganic ions SO42- via surface-enhanced Raman scattering (SERS) with strong signals at low concentrations of 1×10-9 mol/L. This ultrasensitive method might be applied in other fields.

Keywords

surface-enhanced Raman scattering (SERS) / silicon nanowires (SiNWs) / Ag nanoparticles / sulfate ions

Cite this article

Download citation ▾
Yueyin SHAO, Yongqian WEI, Zhenghua WANG. Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure. Front Optoelec Chin, 2011, 4(4): 378‒381 https://doi.org/10.1007/s12200-011-0171-8

References

[1]
Collins P G, Zettl A, Bando H, Thess A, Smalley R E. Nanotube nanodevice. Science, 1997, 278(5335): 100–103
CrossRef Google scholar
[2]
Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 2001, 291(5505): 851–853
CrossRef Pubmed Google scholar
[3]
Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J, Yang P D. Nanoribbon waveguides for subwavelength photonics integration. Science, 2004, 305(5688): 1269–1273
CrossRef Pubmed Google scholar
[4]
Korgel B A. Materials science. Self-assembled nanocoils. Science, 2004, 303(5662): 1308–1309
CrossRef Pubmed Google scholar
[5]
Hu M S, Chen H L, Shen C H, Hong L S, Huang B R, Chen K H, Chen L C. Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nature Materials, 2006, 5(2): 102–106
CrossRef Pubmed Google scholar
[6]
Eisenstein M. Protein detection goes down to the wire. Nature Methods, 2005, 2(11): 804–805
CrossRef Pubmed Google scholar
[7]
Alivisatos P. The use of nanocrystals in biological detection. Nature Biotechnology, 2004, 22(1): 47–52
CrossRef Pubmed Google scholar
[8]
Ma D D D, Lee C S, Au F C K, Tong S Y, Lee S T. Small-diameter silicon nanowire surfaces. Science, 2003, 299(5614): 1874–1877
CrossRef Pubmed Google scholar
[9]
Shao M W, Cheng L, Zhang X H, Ma D D D, Lee S T. Excellent photocatalysis of HF-treated silicon nanowires. Journal of the American Chemical Society, 2009, 131(49): 17738–17739
[10]
Cui Y, Duan X F, Hu J T, Lieber C M. Doping and electrical transport in silicon nanowires. Journal of Physical Chemistry B, 2000, 104(22): 5213–5216
CrossRef Google scholar
[11]
Chung S W, Yu J Y, Heath J R. Silicon nanowire devices.Applied Physics Letters, 2000, 76(15): 2068–2070
CrossRef Google scholar
[12]
Li Z, Chen Y, Li X, Kamins T I, Nauka K, Williams R S. Sequence-specific label-free DNA sensors based on silicon nanowires.Nano Letters, 2004, 4(2): 245–247
CrossRef Google scholar
[13]
Zhou X T, Hu J Q, Li C P, Ma D D D, Lee C S, Lee S T. Silicon nanowires as chemical sensors. Chemical Physics Letters, 2003, 369(1–2): 220–224
CrossRef Google scholar
[14]
Shao M W, Shan Y Y, Wong N B, Lee S T. Silicon nanowire sensors for bioanalytical applications: Glucose and hydrogen peroxide detection. Advanced Functional Materials, 2005, 15(9): 1478– 1482
CrossRef Google scholar
[15]
Shao M W, Yao H, Zhang M L, Wong N B, Shan Y Y, Lee S T. Fabrication and application of long strands of silicon nanowires as sensors for bovine serum albumin detection. Applied Physics Letters, 2005, 87(18): 183106
CrossRef Google scholar
[16]
Lyon L A, Keating C D, Fox A P, Baker B E, He L, Nicewarner S R, Mulvaney S P, Natan M J. Raman spectroscopy. Analytical Chemistry, 1998, 70(12): 341–362
CrossRef Pubmed Google scholar
[17]
Mulvaney S P, Keating C D. Raman spectroscopy. Analytical Chemistry, 2000, 72(12): 145–158
CrossRef Pubmed Google scholar
[18]
Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chemical Society Reviews, 1998, 27(4): 241–250
CrossRef Google scholar
[19]
Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews, 1999, 99(10): 2957–2976
CrossRef Pubmed Google scholar
[20]
Szulbinski W S, Czernuszewicz R S. The effect of ligand structure on surface enhanced Raman scattering by Fe(II) macrocyclic complexes: [FeIITPC]2+ and [FeIIDPC]2+. Inorganica Chimica Acta, 1996, 247(1): 11–18
CrossRef Google scholar
[21]
Shao M W, Zhang M L, Wong N B, Ma D D D, Wang H, Chen W W, Lee S T. Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced raman spectroscopy. Applied Physics Letters, 2008, 93(23): 233118
CrossRef Google scholar
[22]
Shao M W, Lu L, Wang H, Wang S, Zhang M L, Ma D D D, Lee S T. An ultrasensitive method: surface-enhanced Raman scattering of Ag nanoparticles from beta-silver vanadate and copper. Chemical Communicatons, 2008, (20): 2310–2312
[23]
D’Urzo L, Bozzini B. SERS study of the galvanostatic sequence used for the electrochemical deposition of copper from baths employed in the fabrication of interconnects. Journal of Materials Science Materials in Electronics, 2009, 20(3): 217–222
CrossRef Google scholar
[24]
Bozzini B, D’Urzo L, Mele C, Romanello V. Electrodeposition of Cu from acidic sulphate solutions in the presence of polyethylene glycol and chloride ions. Journal of Materials Science Materials in Electronics, 2006, 17(11): 915–923
CrossRef Google scholar
[25]
Mosier-Boss P A, Lieberman S H. Detection of nitrate and sulfate anions by normal Raman spectroscopy and SERS of cationic-coated, silver substrates. Applied Spectroscopy, 2000, 54(8): 1126–1135
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 20701001), and the author thanks to Prof. J. Zuo at USTC for his help in SERS work.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(259 KB)

Accesses

Citations

Detail

Sections
Recommended

/