Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure
Yueyin SHAO, Yongqian WEI, Zhenghua WANG
Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure
Silicon nanowires (SiNWs) with tens of micrometer in length have been synthesized and modified with Ag nanoparticles, which were confirmed by X-ray diffractometer (XRD), scanning electron microscopy and transmission electron microscopy. The Ag/Si nanostructure was employed to detect inorganic ions via surface-enhanced Raman scattering (SERS) with strong signals at low concentrations of 1×10-9 mol/L. This ultrasensitive method might be applied in other fields.
surface-enhanced Raman scattering (SERS) / silicon nanowires (SiNWs) / Ag nanoparticles / sulfate ions
[1] |
Collins P G, Zettl A, Bando H, Thess A, Smalley R E. Nanotube nanodevice. Science, 1997, 278(5335): 100–103
CrossRef
Google scholar
|
[2] |
Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 2001, 291(5505): 851–853
CrossRef
Pubmed
Google scholar
|
[3] |
Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J, Yang P D. Nanoribbon waveguides for subwavelength photonics integration. Science, 2004, 305(5688): 1269–1273
CrossRef
Pubmed
Google scholar
|
[4] |
Korgel B A. Materials science. Self-assembled nanocoils. Science, 2004, 303(5662): 1308–1309
CrossRef
Pubmed
Google scholar
|
[5] |
Hu M S, Chen H L, Shen C H, Hong L S, Huang B R, Chen K H, Chen L C. Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nature Materials, 2006, 5(2): 102–106
CrossRef
Pubmed
Google scholar
|
[6] |
Eisenstein M. Protein detection goes down to the wire. Nature Methods, 2005, 2(11): 804–805
CrossRef
Pubmed
Google scholar
|
[7] |
Alivisatos P. The use of nanocrystals in biological detection. Nature Biotechnology, 2004, 22(1): 47–52
CrossRef
Pubmed
Google scholar
|
[8] |
Ma D D D, Lee C S, Au F C K, Tong S Y, Lee S T. Small-diameter silicon nanowire surfaces. Science, 2003, 299(5614): 1874–1877
CrossRef
Pubmed
Google scholar
|
[9] |
Shao M W, Cheng L, Zhang X H, Ma D D D, Lee S T. Excellent photocatalysis of HF-treated silicon nanowires. Journal of the American Chemical Society, 2009, 131(49): 17738–17739
|
[10] |
Cui Y, Duan X F, Hu J T, Lieber C M. Doping and electrical transport in silicon nanowires. Journal of Physical Chemistry B, 2000, 104(22): 5213–5216
CrossRef
Google scholar
|
[11] |
Chung S W, Yu J Y, Heath J R. Silicon nanowire devices.Applied Physics Letters, 2000, 76(15): 2068–2070
CrossRef
Google scholar
|
[12] |
Li Z, Chen Y, Li X, Kamins T I, Nauka K, Williams R S. Sequence-specific label-free DNA sensors based on silicon nanowires.Nano Letters, 2004, 4(2): 245–247
CrossRef
Google scholar
|
[13] |
Zhou X T, Hu J Q, Li C P, Ma D D D, Lee C S, Lee S T. Silicon nanowires as chemical sensors. Chemical Physics Letters, 2003, 369(1–2): 220–224
CrossRef
Google scholar
|
[14] |
Shao M W, Shan Y Y, Wong N B, Lee S T. Silicon nanowire sensors for bioanalytical applications: Glucose and hydrogen peroxide detection. Advanced Functional Materials, 2005, 15(9): 1478– 1482
CrossRef
Google scholar
|
[15] |
Shao M W, Yao H, Zhang M L, Wong N B, Shan Y Y, Lee S T. Fabrication and application of long strands of silicon nanowires as sensors for bovine serum albumin detection. Applied Physics Letters, 2005, 87(18): 183106
CrossRef
Google scholar
|
[16] |
Lyon L A, Keating C D, Fox A P, Baker B E, He L, Nicewarner S R, Mulvaney S P, Natan M J. Raman spectroscopy. Analytical Chemistry, 1998, 70(12): 341–362
CrossRef
Pubmed
Google scholar
|
[17] |
Mulvaney S P, Keating C D. Raman spectroscopy. Analytical Chemistry, 2000, 72(12): 145–158
CrossRef
Pubmed
Google scholar
|
[18] |
Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chemical Society Reviews, 1998, 27(4): 241–250
CrossRef
Google scholar
|
[19] |
Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews, 1999, 99(10): 2957–2976
CrossRef
Pubmed
Google scholar
|
[20] |
Szulbinski W S, Czernuszewicz R S. The effect of ligand structure on surface enhanced Raman scattering by Fe(II) macrocyclic complexes: [FeIITPC]2+ and [FeIIDPC]2+. Inorganica Chimica Acta, 1996, 247(1): 11–18
CrossRef
Google scholar
|
[21] |
Shao M W, Zhang M L, Wong N B, Ma D D D, Wang H, Chen W W, Lee S T. Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced raman spectroscopy. Applied Physics Letters, 2008, 93(23): 233118
CrossRef
Google scholar
|
[22] |
Shao M W, Lu L, Wang H, Wang S, Zhang M L, Ma D D D, Lee S T. An ultrasensitive method: surface-enhanced Raman scattering of Ag nanoparticles from beta-silver vanadate and copper. Chemical Communicatons, 2008, (20): 2310–2312
|
[23] |
D’Urzo L, Bozzini B. SERS study of the galvanostatic sequence used for the electrochemical deposition of copper from baths employed in the fabrication of interconnects. Journal of Materials Science Materials in Electronics, 2009, 20(3): 217–222
CrossRef
Google scholar
|
[24] |
Bozzini B, D’Urzo L, Mele C, Romanello V. Electrodeposition of Cu from acidic sulphate solutions in the presence of polyethylene glycol and chloride ions. Journal of Materials Science Materials in Electronics, 2006, 17(11): 915–923
CrossRef
Google scholar
|
[25] |
Mosier-Boss P A, Lieberman S H. Detection of nitrate and sulfate anions by normal Raman spectroscopy and SERS of cationic-coated, silver substrates. Applied Spectroscopy, 2000, 54(8): 1126–1135
CrossRef
Google scholar
|
/
〈 | 〉 |