Electrochemical analysis of dye adsorption on aligned carbon nanofiber arrays coated with TiO2 nanoneedles for dye-sensitized solar cell
Jianwei LIU, Jun LI
Electrochemical analysis of dye adsorption on aligned carbon nanofiber arrays coated with TiO2 nanoneedles for dye-sensitized solar cell
An electrochemical method has been developed to analyze dye absorption on the aligned carbon nanofiber arrays coated with TiO2 nanoneedles for dye-sensitized solar cell. The unique nanostructure with the roughness factor of 90.6 provides a large effective surface area for dye adsorption. The experimental results showed that the dye molecules cover 39.7% of the TiO2 surface area which influences the performance of dye-sensitized solar cell. The electrochemical method provides the information of the coverage of dye molecules which is a key issue to optimize solar cell performance.
electrochemical analysis / aligned carbon nanofibers / dye adsorption / solar cell
[1] |
O’Regan B , Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740
CrossRef
Google scholar
|
[2] |
Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters, 2006, 6(2): 215–218
CrossRef
Pubmed
Google scholar
|
[3] |
Zhu K, Neale N R, Miedaner A, Frank A J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters, 2007, 7(1): 69–74
CrossRef
Pubmed
Google scholar
|
[4] |
Baxter J B. Aydil E S. Nanowire-based dye-sensitized solar cells. Applied Physics Letters, 2005, 86 (5): 053114-1–053114-3
|
[5] |
Law M, Greene L E, Johnson J C, Saykally R, Yang P D. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4(6): 455–459
CrossRef
Pubmed
Google scholar
|
[6] |
Martinson A B F, Elam J W, Hupp J T, Pellin M J. ZnO nanotube based dye-sensitized solar cells. Nano Letters, 2007, 7(8): 2183–2187
CrossRef
Pubmed
Google scholar
|
[7] |
Maiolo J R 3rd, Kayes B M, Filler M A, Putnam M C, Kelzenberg M D, Atwater H A, Lewis N S. High aspect ratio silicon wire array photoelectrochemical cells. Journal of the American Chemical Society, 2007, 129(41): 12346–12347
CrossRef
Pubmed
Google scholar
|
[8] |
Goodey A P, Eichfeld S M, Lew K K, Redwing J M, Mallouk T E. Silicon nanowire array photelectrochemical cells. Journal of the American Chemical Society, 2007, 129(41): 12344–12345
CrossRef
Pubmed
Google scholar
|
[9] |
Liu J W, Li J, Sedhain A, Lin J Y, Jiang H X. Structure and photoluminescence study of TiO2 nanoneedle texture along vertically aligned carbon nanofiber arrays. Journal of Physical Chemistry C, 2008, 112(44): 17127–17132
CrossRef
Google scholar
|
[10] |
Liu J W, Kuo Y T, Klabunde K J, Rochford C, Wu J, Li J. Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays. ACS Applied Materials & Interfaces, 2009, 1(8): 1645–1649
CrossRef
Pubmed
Google scholar
|
[11] |
Hirose F, Kuribayashi K, Shikaku M, Narita Y, Takahashi Y, Kimura Y, Niwano M. Adsorption density control of N719 on TiO2 electrodes for highly efficient dye-sensitized solar cells. Journal of the Electrochemical Society, 2009, 156(9): B987–B990
CrossRef
Google scholar
|
[12] |
Neale N R, Kopidakis N, van de Lagemaat J, Gratzel M, Frank A J. Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells:βshielding versus band-edge movement. Journal of Physical Chemistry B, 2005, 109(49): 23183–23189
CrossRef
Google scholar
|
[13] |
Skoog D A, Holler F J, Grouch S R. Principles of Instrumental Analysis.6th Edition. Vancouver: Thomson Brooks/Cole, 2007
|
[14] |
Ren Z F, Huang Z P, Xu J W, Wang J H, Bush P, Siegal M P, Provencio P N. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 1998, 282(5391): 1105–1107
CrossRef
Pubmed
Google scholar
|
[15] |
Cruden B A, Cassell A M, Ye Q, Meyyappan M. Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers. Journal of Applied Physics, 2003, 94(6): 4070–4078
CrossRef
Google scholar
|
[16] |
Melechko A V, Merkulov V I, McKnight T E, Guillorn M A, Klein K L, Lowndes D H, Simpson M L. Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly. Journal of Applied Physics, 2005, 97(4): 041301
CrossRef
Google scholar
|
[17] |
Haque M S, Teo K B K, Rupensinghe N L, Ali S Z, Haneef I, Maeng S, Park J, Udrea F, Milne A I. On-chip deposition of carbon nanotubes using CMOS microhotplates. Nanotechnology, 2008, 19(2): 025607
CrossRef
Google scholar
|
[18] |
Ranganathan S, Kuo T C, McCreery R L. Facile preparation of active glassy carbon electrodes with activated carbon and organic solvents. Analytical Chemistry, 1999, 71(16): 3574–3580
CrossRef
Google scholar
|
[19] |
Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S E. Li + ion insertion in TiO2 (Anatase). 2. voltammetry on nanoporous films. Journal of Physical Chemistry B, 1997, 101(39): 7717–7722
CrossRef
Google scholar
|
[20] |
Shklover V, Ovchinnikov Y E, Braginsky L S, Zakeeruddin S M, Gratzel M. Structure of organic/inorganic interface in assembled materials comprising molecular components. crystal structure of the sensitizer Bis[(4,4‘-carboxy-2,2‘-bipyridine)(thiocyanato)]ruthenium(II). Chemistry of Materials, 1998, 10(9): 2533–2541
CrossRef
Google scholar
|
/
〈 | 〉 |