Intermediate-band solar cells based on dilute alloys and quantum dots
Weiming WANG, Jun YANG, Xin ZHU, Jamie PHILLIPS
Intermediate-band solar cells based on dilute alloys and quantum dots
This paper describes our recent developments of intermediate-band solar cells, with a focus on the use of dilute alloys and nanostructured materials such as quantum dots (QDs). The concept of “full-spectrum” solar cells and their working mechanism with various material structures are first illustrated. A comprehensive review of ZnTe:O-based intermediate-band solar cells, including material growth, structural and chemical analysis, device modeling and testing, are presented. Finally, the progress and challenges of quantum-dot-based solar cells are discussed.
full-spectrum solar cell / intermediate band / dilute alloy / quantum dot (QD)
[1] |
Green M A. Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Progress in Photovoltaics: Research and Applications, 2001, 9(2): 123–135
CrossRef
Google scholar
|
[2] |
Green M A, Emery K, Hishikawa Y, Warta W.Solar cell efficiency tables (version 36). Progress in Photovoltaics: Research and Applications, 2010, 18(5):346–352
CrossRef
Google scholar
|
[3] |
Shockley W, Queisser H J. Detailed balance limit of efficiency of p–n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510–519
CrossRef
Google scholar
|
[4] |
Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters. Journal of Applied Physics, 1982, 53(5): 3813–3818
CrossRef
Google scholar
|
[5] |
Nozik A J. Quantum dot solar cells. Physica E, Low-Dimensional Systems and Nanostructures, 2002, 14(1-2): 115–120
CrossRef
Google scholar
|
[6] |
García I, Rey-Stolle I, Galiana B, Algora C. A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns. Applied Physics Letters, 2009, 94(5): 053509
CrossRef
Google scholar
|
[7] |
Algora C, Rey-Stolle I, Garcia I, Galiana B, Baudrit M, Espinet P, Barrigón E, Gonzalez J R. III–V multijunction solar cells for ultra-high concentration photovoltaics. 2009 IEEE 34th Photovoltaic Specialists Conference (PVSC), Philadelphia, PA, 2009, 1571–1575
|
[8] |
Geisz J F, Kurtz S, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kiehl J T. High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction. Applied Physics Letters, 2007, 91(2): 023502
CrossRef
Google scholar
|
[9] |
Swanson R M. The promise of concentrators. Progress in Photovoltaics: Research and Applications, 2000, 8(1): 93–111
CrossRef
Google scholar
|
[10] |
Hsu L, Walukiewicz W. Modeling of InGaN/Si tandem solar cells. Journal of Applied Physics, 2008, 104(2): 024507
CrossRef
Google scholar
|
[11] |
CdTe PV progresses to mass production, http://www.semiconductortoday.com/features/SemiconductorToday%20-%20CdTe%20PV.pdf
|
[12] |
Yan B, Yue G, Owens J M, Yang J, Guha S. Over 15% efficient hydrogenated amorphous silicon based triple-junction solar cells incorporating nanocrystalline silicon. 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, 2006, 1477–1480
|
[13] |
Wolf M. Limitations and possibilities for improvement of photovoltaic solar energy converters: part I: considerations for earth’s surface operation. Proceedings of the IRE, 1960, 48(7): 1246–1263
CrossRef
Google scholar
|
[14] |
Luque A, Marti A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters, 1997, 78(26): 5014–5017
CrossRef
Google scholar
|
[15] |
Thomas D G, Hopfield J J, Frosch C J. Isoelectronic traps due to nitrogen in gallium phosphide. Physical Review Letters, 1965, 15(22): 857–860
CrossRef
Google scholar
|
[16] |
Cuthbert J D, Thomas D G. Fluorescent decay times of excitons bound to isoelectronic traps in GaP and ZnTe. Physical Review, 1967, 154 (3): 763–771
CrossRef
Google scholar
|
[17] |
Wu J, Shan W, Walukiewicz W. Band anticrossing in highly mismatched III–V semiconductor alloys. Semiconductor Science and Technology, 2002, 17(8): 860–869
CrossRef
Google scholar
|
[18] |
Yu K M, Walukiewicz W, Wu J, Shan W, Beeman J W, Scarpulla M A, Dubon O D, Becla P. Diluted II-VI oxide semiconductors with multiple band gaps. Physical Review Letters, 2003, 91(24): 246403
CrossRef
Google scholar
|
[19] |
Burki Y, Czaja W, Capozzi V, Schwendimann P. The temperature dependence of the photoluminescence and lifetime of ZnTe:O. Journal of Physics Condensed Matter, 1993, 5(49): 9235–9252
CrossRef
Google scholar
|
[20] |
Wang W, Bowen W, Spanninga S, Lin S, Phillips J. Optical characteristics of ZnTeO thin films synthesized by pulsed laser deposition and molecular beam epitaxy. Journal of Electronic Materials, 2009, 38(1): 119–125
CrossRef
Google scholar
|
[21] |
Nabetani Y, Okuno T, Aoki K, Kato T, Matsumoto T, Hirai T.Epitaxial growth and optical investigations of ZnTeO alloys. Physica Status Solidi a-Applications and Materials Science 2006, 203 (11): 2653–2657.
|
[22] |
Cuthbert J D. Luminescence and free carrier decay times in semiconductors containing isoelectronic traps. Journal of Applied Physics, 1971, 42(2): 739–746
CrossRef
Google scholar
|
[23] |
Thomas D G, Hopfield J J. Isoelectronic traps due to nitrogen in gallium phosphide. Physical Review, 1966, 150(2): 680–689
CrossRef
Google scholar
|
[24] |
Wang W M, Lin A S, Phillips J D. Intermediate-band photovoltaic solar cell based on ZnTe:O. Applied Physics Letters, 2009, 95(1): 011103
CrossRef
Google scholar
|
[25] |
Wang W. Intermediate band solar cells based on ZnTeO. Ph.D. dissertation, University of Michigan, 2010
|
[26] |
Marti A, Cuadra L, Luque A. Quasi-drift diffusion model for the quantum dot intermediate band solar cell. IEEE Transactions on Electron Devices, 2002, 49(9): 1632–1639
CrossRef
Google scholar
|
[27] |
Luque A, Marti A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Diaz P. Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band. Journal of Applied Physics, 2006, 99(9): 094503
CrossRef
Google scholar
|
[28] |
Lin A S, Wang W M, Phillips J D. Model for intermediate band solar cells incorporating carrier transport and recombination. Journal of Applied Physics, 2009, 105(6): 064512
CrossRef
Google scholar
|
[29] |
Wang W M, Lin A S, Phillips J D, Metzger W K. Generation and recombination rates at ZnTe:O intermediate band states. Applied Physics Letters, 2009, 95(26): 261107
CrossRef
Google scholar
|
[30] |
Luque A, Marti A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Caballero L J, Cuadra L, Balenzategui J L. Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells. Applied Physics Letters, 2005, 87(8): 083505
CrossRef
Google scholar
|
[31] |
Lin A S, Phillips J D. Drift-diffusion modeling for impurity photovoltaic devices. IEEE Transactions on Electron Devices, 2009, 56(12): 3168–3174
CrossRef
Google scholar
|
[32] |
Tanaka T, Yu K M, Stone P R, Beeman J W, Dubon O D, Reichertz L A, Kao V M, Nishio M, Walukiewicz W. Demonstration of homojunction ZnTe solar cells. Journal of Applied Physics, 2010, 108(2): 024502
CrossRef
Google scholar
|
[33] |
Wang W, Phillips J. ZnO/ZnSe/ZnTe heterojunction for ZnTe–based solar cells. Journal of Electronic Materials, 2010 (in press)
|
[34] |
Leonard D, Krishnamurthy M, Reaves C M, Denbaars S P, Petroff P M. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Applied Physics Letters, 1993, 63(23): 3203–3205
CrossRef
Google scholar
|
[35] |
Berger P R, Chang K, Bhattacharya P, Singh J, Bajaj K K. Role of strain and growth-conditions on the growth front profile of InxGa1-xAs on GaAs during the pseudomorphic growth regime. Applied Physics Letters, 1988, 53(8): 684–686
CrossRef
Google scholar
|
[36] |
Bhattacharya P, Mi Z. Quantum-dot optoelectronic devices. Proceedings of the IEEE, 2007, 95(9): 1723–1740
CrossRef
Google scholar
|
[37] |
Yang J, Bhattacharya P, Mi Z. High-performance In0.5Ga0.5As/GaAs quantum dot lasers on silicon with multiple layer quantum dot dislocation filters. IEEE Transactions on Electron Devices, 2007, 54(11): 2849–2855
CrossRef
Google scholar
|
[38] |
Yang J, Bhattacharya P, Mi Z, Qin G X, Ma Z Q. Quantum dot lasers and integrated optoelectronics on silicon platform. Chinese Optics Letters, 2008, 6(10): 727–731
CrossRef
Google scholar
|
[39] |
Fafard S, Hinzer K, Raymond S, Dion M, McCaffrey J, Feng Y, Charbonneau S. Red-emitting semiconductor quantum dot lasers. Science, 1996, 274(5291): 1350–1353
CrossRef
Google scholar
|
[40] |
Mi Z, Yang J, Bhattacharya P. Molecular beam epitaxial growth and characteristics of ultra-low threshold 1.45 mm metamorphic InAs quantum dot lasers on GaAs. Journal of Crystal Growth, 2007, 301–302: 923–926
CrossRef
Google scholar
|
[41] |
Yang J, Heo J, Zhu T, Xu J, Topolancik J, Vollmer F, Ilic R, Bhattacharya P. Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities. Applied Physics Letters, 2008, 92(26): 261110
CrossRef
Google scholar
|
[42] |
Cui D, Xu J, Zhu T, Paradee G, Ashok S, Gerhold M. Harvest of near infrared light in PbSe nanocrystal–polymer hybrid photovoltaic cells. Applied Physics Letters, 2006, 88(18): 183111
CrossRef
Google scholar
|
[43] |
Wei G, Forrest S R. Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier. Nano Letters, 2007, 7(1): 218–222
CrossRef
Google scholar
|
[44] |
Laghumavarapu R B, El-Emawy M, Nuntawong N, Moscho A, Lester L F, Huffaker D L. Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers. Applied Physics Letters, 2007, 91(24): 243115
CrossRef
Google scholar
|
[45] |
Oshima R, Takata A, Okada Y. Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells. Applied Physics Letters, 2008, 93(8): 083111
CrossRef
Google scholar
|
/
〈 | 〉 |