Silicon slow light photonic crystals structures: present achievements and future trends
Eric CASSAN, Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN
Silicon slow light photonic crystals structures: present achievements and future trends
Slow light in planar photonic structures has attracted for some years an increasing interest due to amazing physical effects it allows or reinforces and to the degrees of freedom it raises for designing new optical functions. Controlling light group velocity is achieved through the use of periodical optical media obtained by nano-structuration of semiconductor wafers at the scale of light wavelength: the so-called photonic crystals. This article reviews present achievements realized in the field of slow light photonic bandgap structures, including the physical principles of slow light to the description of the most advanced integrated optical devices relying on it. Challenges and current hot topics related to slow light are discussed to highlight the balance between the advantages and drawbacks of using slow waves in integrated photonic structures. Then, future trends are described, which is focused on the use of slow wave slot waveguides for non-linear optics and bio-photonic applications.
slow light / photonic crystals / silicon photonics / integrated optical devices
[1] |
Pavesi L, Guillot G. Optical Interconnects: The Silicon Approach. Berlin: Springer, 2006
|
[2] |
Soref R. Silicon photonics: a review of recent literature. Chemistry and Materials Science, 2010, 2(1): 1–6
CrossRef
Google scholar
|
[3] |
Jones R, Liao L, Liu A S, Salib M, Rubin D, Coehn O, Samara-Rubio D, Paniccia M. Optical characterization of 1-GHz silicon based optical modulator. Proceedings of SPIE, 2004, 5451: 8–15
CrossRef
Google scholar
|
[4] |
Liu A S, Jones R, Liao L, Samara-Rubio D, Rubin D, Cohen O, Nicolaescu R, Paniccia M. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 2004, 427(6975): 615–618
CrossRef
Google scholar
|
[5] |
Marris-Morini D, Le Roux X, Vivien L, Cassan E, Pascal D, Halbwax M, Maine S, Laval S, Fédéli J M, Damlencourt J F. Optical modulation by carrier depletion in a silicon PIN diode. Optics Express, 2006, 14(22): 10838–10843
CrossRef
Google scholar
|
[6] |
Marris-Morini D, Vivien L, Fédéli J M, Cassan E, Lyan P, Laval S. Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure. Optics Express, 2008, 16(1): 334–339
CrossRef
Google scholar
|
[7] |
Liao L, Liu A, Basak J, Nguyen H, Paniccia M, Rubin D, Chetrit Y, Cohen R, Izhaky N. 40 Gbit/s silicon optical modulator for highspeed applications. Electronics Letters, 2007, 43(22): DOI 10.1049/el:20072253
|
[8] |
Rong H S, Liu A S, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M. An all-silicon Raman laser. Nature, 2005, 433(7023): 292–294
|
[9] |
Rong H S, Jones R, Liu A S, Cohen O, Hak D, Fang A, Paniccia M. A continuous-wave Raman silicon laser. Nature, 2005, 433(7027): 725–728
|
[10] |
Foster M A, Turner A C, Sharping J E, Schmidt B S, Lipson M, Gaeta A L. Broad-band optical parametric gain on a silicon photonic chip. Nature, 2006, 441(7096): 960–963
|
[11] |
Vallaitis T, Bogatscher S, Alloatti L, Dumon P, Baets R, Scimecca M L, Biaggio I, Diederich F, Koos C, Freude W, Leuthold J. Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguides geometries. Optics Express, 2009, 17(20): 17357–17368
CrossRef
Google scholar
|
[12] |
Wang X L, Lin C Y, Chakravarty S, Luo J D, Jen A K Y, Chen R T. Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides. Optics Letters, 2011, 36(6): 882–884
CrossRef
Google scholar
|
[13] |
Chan S, Horner R, Fauchet P M, Miller B L. Identification of gram negative bacteria using nanoscale silicon microcavities. Journal of the American Chemical Society, 2001, 123(47): 11797–11798
CrossRef
Google scholar
|
[14] |
Lee M, Fauchet P M. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Optics Express, 2007, 15(8): 4530–4535
|
[15] |
Krauss T F. Slow light in photonic crystal waveguides. Journal of Physics D: Applied Physics, 2007, 40(9): 2666–2670
CrossRef
Google scholar
|
[16] |
Joannopoulos J D, Johnson S G, Winn J N, Meade R D. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton University Press, 2008
|
[17] |
Frandsen L H, Lavrinenko A V, Fage-Pedersn J, Borel B. Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Optics Express, 2006, 14(20): 9444–9450
CrossRef
Google scholar
|
[18] |
Li J, White T P, O’Faolain L, Gomez-Iglesias A, Krauss T F. Systematic design of flat band slow light in photonic crystal waveguides. Optics Express, 2008, 16(9): 6227–6232
CrossRef
Google scholar
|
[19] |
Ebnali-Heidari M, Grillet C, Monat C, Eggleton B J. Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration. Optics Express, 2009, 17(3): 1628– 1634
CrossRef
Google scholar
|
[20] |
Hao R, Cassan E, Kurt H, Le Roux X, Marris-Morini D, Vivien L, Wu H, Zhou Z, Zhang X. Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion. Optics Express, 2010, 18(6): 5942–5950
CrossRef
Google scholar
|
[21] |
Hao R, Cassan E, Le Roux X, Gao D, Do Khanh V, Vivien L, Marris-Morini D, Zhang X. Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Optics Express, 2010, 18(16): 16309–16319
CrossRef
Google scholar
|
[22] |
Grillot F, Vivien L, Laval S, Pascal D, Cassan E. Size influence on the propagation loss induced by side-wall roughness in ultra-small SOI waveguides. IEEE Photonics Technology Letters, 2004, 16(7): 1661–1663
CrossRef
Google scholar
|
[23] |
Grillot F, Vivien L, Laval S, Cassan E. Propagation loss in single-mode ultra small square silicon-on-isulator optical waveguides. Journal of Lightwave Technology, 2006, 24(2): 891–896
CrossRef
Google scholar
|
[24] |
Monat C, Corcoran B, Pudo D, Ebnali-Heidari M, Grillet C, Pelusi M D, Moss D J, Eggleton B, White T P, O’Faolain L, Krauss T F. Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE Journal on Selected Topics in Quantum Electronics, 2010, 16(1): 344–356
CrossRef
Google scholar
|
[25] |
O’Faolain L, Schulz S A, Beggs D M, White T P, Spasenovic M, Kuipers L, Morichetti F, Melloni A, Mazoyer S, Hugonin J P, Lalanne P, Krauss T F. Loss engineered slow light waveguides. Optics Express, 2010, 18(26): 27627–27638
CrossRef
Google scholar
|
[26] |
Askari M, Momeni B, Yegnanarayanan S, Eftekhar A, Adibi A. Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime. Proceedings of SPIE, 2008, 6901: 69011A
CrossRef
Google scholar
|
[27] |
Johnson S G, Bienstman P, Skorobogatiy M A, Ibanescu M, Lidorikis E, Joannopoulos J D. Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals. Physical Review E, 2002, 66(6): 066608
CrossRef
Google scholar
|
[28] |
de Sterke C M, Walker J, Dossou K B, Botten L C. Efficient slow light coupling into photonic crystals. Optics Express, 2007, 15(17): 10984–10990
CrossRef
Google scholar
|
[29] |
Hugonin J P, Lalanne P, White T W, Krauss T F. Coupling into slow-mode photonic crystal waveguides. Optics Letters, 2007, 32(18): 2638–2640
CrossRef
Google scholar
|
[30] |
de Sterke C M, Dossou K B, White T P, Botten L C, McPhedran R C. Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes. Optics Express, 2009, 17(20): 17338–17343
CrossRef
Google scholar
|
[31] |
Gersen H, Karle T J, Engelen R J P, Bogaerts W, Korterik J P, van Hulst N F, Krauss T F, Kuipers L. Real-space observation of ultraslow light in photonic crystal waveguides. Physical Review Letters, 2005, 94(7): 073903
CrossRef
Google scholar
|
[32] |
Asano T, Kiyota K, Kumamoto D, Song B S, Noda S. Time-domain measurement of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide. Applied Physics Letters, 2004, 84(23): 4690–4692
CrossRef
Google scholar
|
[33] |
Jacobsen R, Lavrinenko A, Frandsen L, Peucheret C, Zsigri B, Moulin G, Fage-Pedersen J, Borel P. Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides. Optics Express, 2005, 13(20): 7861–7871
CrossRef
Google scholar
|
[34] |
Imhof A, Vos W L, Sprik R, Lagendijk A. Large effects near the band edges of photonic crystals. Physical Review Letters, 1999, 83(15): 2942–2945
CrossRef
Google scholar
|
[35] |
Vlasov Y A, O’Boyle M, Hamann H F, McNab S J. Active control of slow light on a chip photonic crystal waveguides. Nature, 2005, 438(7064): 65–69
CrossRef
Google scholar
|
[36] |
Jiang Y Q, Jiang W, Gu L, Chen X N, Chen R T. 80-micron interaction length photonic crystal waveguide modulator. Applied Physics Letters, 2005, 87(22): 221105
CrossRef
Google scholar
|
[37] |
Gu L, Jiang W, Chen X, Wang L, Chen R T. High-speed electro-optical silicon modulators based on photonic crystal waveguides. Proceedings of SPIE, 2007, 6477: 64770Z
CrossRef
Google scholar
|
[38] |
Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
CrossRef
Google scholar
|
[39] |
Di Falco A, O’Faolain L, Krauss T F. Photonic crystal slotted slab waveguides. Photonics and Nanostructures — Fundamental and Applications, 2008, 6(1): 38–41
CrossRef
Google scholar
|
[40] |
Brosi J M, Koos C, Andreani L C, Waldow M, Freude W. High-speed low-voltage electro-optics modulator with a polymer-infiltrated silicon photonic crystal waveguide. Optics Express, 2008, 16(6): 4177–4191
CrossRef
Google scholar
|
[41] |
Caer C, Le Roux X, Do V K, Marris-Morini D, Izard N, Vivien L, Gao D, Cassan E. Strong light confinement in slot photonic crystal waveguide by Bragg corrugation. IEEE Photonics Technology Letters (in press)
|
/
〈 | 〉 |