All-optical signal processing based on semiconductor optical amplifiers

Yong LIU, Ligong CHEN, Tianxiang XU, Jinglei MAO, Shangjian ZHANG, Yongzhi LIU

PDF(368 KB)
PDF(368 KB)
Front. Optoelectron. ›› 2011, Vol. 4 ›› Issue (3) : 231-242. DOI: 10.1007/s12200-011-0141-1
REVIEW ARTICLE
REVIEW ARTICLE

All-optical signal processing based on semiconductor optical amplifiers

Author information +
History +

Abstract

In this paper, we review the recent progress in the optical signal processing based on the nonlinearity of semiconductor optical amplifiers (SOAs). The four important optical signal processing functional blocks in optical switching are presented, i.e., optical wavelength conversion, optical regeneration, optical logic, and optical format conversion. We present a brief overview of optical wavelength conversion, and focus on various schemes to suppress the slow gain recovery of the SOA and improve the operating speed of the SOA-based optical switches. Optical regeneration including re-amplification, re-shaping and re-timing is also presented. Optical clock recovery that is essential for optical regeneration is reviewed. We also report the recent advances in optical logic and optical format conversion, respectively. After reviewing the four important optical signal processing functional blocks, the review concludes with the future research directions and photonic integration.

Keywords

optical switching / optical signal processing / semiconductor optical amplifier / photonic integration

Cite this article

Download citation ▾
Yong LIU, Ligong CHEN, Tianxiang XU, Jinglei MAO, Shangjian ZHANG, Yongzhi LIU. All-optical signal processing based on semiconductor optical amplifiers. Front Optoelec Chin, 2011, 4(3): 231‒242 https://doi.org/10.1007/s12200-011-0141-1

References

[1]
Alferness R C. Optical communications — a view into the future. In: Proceedings of the 34th European Conference on Optical Communication (ECOC). 2008, 1
[2]
O’Mahony M J, Politi C, Klonidis D, Nejabati R, Simeonidou D. Future optical networks. IEEE Journal of Lightwave Technology, 2006, 24(12): 4684-4686
[3]
Desurvire E B. Capacity demand and technology challenges for lightwave systems in the next two decades. IEEE Journal of Lightwave Technology, 2006, 24(12): 4697-4710
[4]
Sano A, Masuda H, Kobayashi T, Fujiwara M, Horikoshi K, Yoshida E, Miyamoto Y, Matsui M, Mizoguchi M, Yamazaki H, Sakamaki Y, Ishii H. 69.1-Tb/s (432×171-Gb/s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection. In: Proceedings of Optical Fiber Communication Conference (OFC/NFOEC) 2010. 2010, 1-3
[5]
Dorren H J S, Hill M T, Liu Y, Calabretta N, Srivatsa A, Huijskens FM, de Waardt H, Khoe G D. Optical packet switching and buffering by using all-optical signal processing methods. Journal of Lightwave Technology, 2003, 21(1): 2-12
[6]
Yoo S J B. Optical packet and burst switching technologies for the future photonic internet. IEEE Journal of Lightwave Technology, 2006, 24(12): 4468-4492
[7]
Blumenthal D J, Bowers J E, Rau L, Chou H F, Rangarajan S, Wang W, Poulsen K N. Optical signal processing for optical packet switching networks. IEEE Communications Magazine, 2003, 41(2): S23-S29
[8]
Ben Yoo S J. Power consumption in optical packet switches. In: Proceedings of the 34th European Conference on Optical Communication (ECOC). 2008
[9]
Nicholes S C, Mašanović M L, Jevremović B, Lively E, Coldren L A, Blumenthal D J. The world’s first InP 8×8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port. In: Proceedings of Optical Fiber Communication Conference (OFC) 2009. 2009, PDPB1
[10]
Zirngibl M. IRIS: optical switching technologies for scalable data networks. In: Proceedings of Optical Fiber Communication Conference (OFC) 2006. 2006, 2
[11]
Blumenthal D J, Masanovic M. LASOR (label switched optical router): architecture and underlying integration technologies. In: Proceedings of European Conference on Optical Communication (ECOC). 2005, 49
[12]
Ramos F, Kehayas E, Martinez J M, Clavero R, Marti J, Stampoulidis L, Tsiokos D, Avramopoulos H, Zhang J, Holm-Nielsen P V, Chi N, Jeppesen P, Yan N, Monroy I T, Koonen A M J, Hill M T, Liu Y, Dorren H J S, Caenegem R V, Colle D, Pickavet M, Rip ti B. IST-LASAGNE: towards all-optical label swapping employing optical logic gates and optical flip-flops. Journal of Lightwave Technology, 2005, 23(10): 2993-3011
[13]
Stamatiadis C, Petrantonakis D, Bakopoulos P, Kehayas E, Zakynthinos P, Kouloumentas Ch, Stampoulidis L, Dekker R, Klein E J, Avramopoulos H. First demonstration of WDM-enabled all-optical wavelength conversion with a SOA and a 2nd order microring resonator ROADM. In: Proceedings of Optical Fiber Communication Conference (OFC). 2009, PDPA8
[14]
Cotter D, Manning R J, Blow K J, Ellis A D, Kelly A E, Nesset D, Phillips I D, Poustie A J, Rogers D C. Nonlinear optics for high-speed digital information processing. Science, 1999, 286(5444): 1523-1528
[15]
Stubkjaer K E. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE Journal on Selected Topics in Quantum Electronics, 2000, 6(6): 1428-1435
[16]
Dorren H J S, Lenstra D, Liu Y, Hill M T, Khoe G D. Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories. IEEE Journal of Quantum Electronics, 2003, 39(1): 141-148
[17]
Nuzman C, Leuthold J, Ryf R, Chandrasekhar S, Giles C, Neilson D. Design and implementation of wavelength-flexible network nodes. Journal of Lightwave Technology, 2003, 21(3): 648-663
CrossRef Google scholar
[18]
Gripp J, Duelk M, Simsarian J E, Bhardwaj A, Bernasconi P, Laznicka O, Zirngibl M. Optical switch fabrics for ultra-high capacity IP-routers. Journal of Lightwave Technology, 2003, 21(11): 2839-2850
CrossRef Google scholar
[19]
Kang I, Dorrer C, Zhang L M, Dinu M, Rasras M, Buhl L L, Cabot S, Bhardwaj A, Liu X, Cappuzz M A, Gomez L, Wong-Foy A, Chen Y F, Dutta N K, Patel S S, Neilson D T, Giles C R, Piccirilli A, Jaques J. Characterization of the dynamical processes in all-optical signal processing using semiconductor optical amplifiers. IEEE Journal of Selected Topics Quantum Electronics, 2008, 14(3): 758-769
CrossRef Google scholar
[20]
Mørk J, Mecozzi A. Response function for gain and refractive index dynamics in active semiconductor waveguides. Applied Physics Letters, 1994, 65(14): 1736-1738
CrossRef Google scholar
[21]
Nielsen M L, Mørk J, Suzuki R, Sakaguchi J, Ueno Y. Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches. Optics Express, 2006, 14(1): 331-347
CrossRef Pubmed Google scholar
[22]
Huang X, Qin C, Huang D X, Zhang X L. Local carrier recovery acceleration in quantum well semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2010, 46(10): 1407-1413
CrossRef Google scholar
[23]
Spyropoulou M, Pleros N, Vyrsokinos K, Apostolopoulos D, Bougioukos M, Petrantonakis D, Miliou A, Avramopoulos H. 40 Gb/s NRZ wavelength conversion using a differentially-biased SOA-MZI: theory and experiment. Journal of Lightwave Technology, 2011, 29(10): 1489-1499
CrossRef Google scholar
[24]
Leuthold J, Moller L, Jaques J, Cabot S, Zhang L, Bernasconi P, Cappuzzo M, Gomez L, Laskowski E, Chen E, Wong-Foy A, Griffin A. 160 Gb/s SOA all-optical wavelength converter and assessment of its regenerative properties. Electronics Letters, 2004, 40(9): 554-555
CrossRef Google scholar
[25]
Kang I, Dorrer C, Zhang L, Rasras M, Buhl L, Bhardwaj A, Cabot S, Dinu M, Liu X, Cappuzzo M, Gomez L, Wong-Foy A, Chen Y F, Patel S, Neilson D T, Jacques J, Giles C R. Regenerative all optical wavelength conversion of 40-Gb/s DPSK signals using a semiconductor optical amplifier Mach-Zehnder interferometer. In: Proceedings of European Conference on Optical Communication (ECOC) 2005. 2005, 6: 29-30
CrossRef Google scholar
[26]
Wang J, Maitra A, Freude W, Leuthold J. Regenerative properties of interferometric all-optical DPSK wavelength converters. Optics Express, 2009, 17(25): 22639-22658
CrossRef Pubmed Google scholar
[27]
Liu Y, Tangdiongga E, Li Z, de Waardt H, Koonen A M J, Khoe G D, Shu X W, Bennion I, Dorren H J S. Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier. IEEE Journal of Lightwave Technology, 2007, 25(1): 103-108
CrossRef Google scholar
[28]
Liu Y, Tangdiongga E, Li Z, Zhang S X, de Waardt H, Khoe G D, Dorren H J S. Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter. IEEE Journal of Lightwave Technology, 2006, 24 (1): 230-236
CrossRef Google scholar
[29]
Leuthold J, Marom M D, Cabot S, Jaques J J, Ryf R, Giles C R. All-optical wavelength conversion using a pulse reformatting optical filter. Journal of Lightwave Technology, 2004, 22(1): 186-192
CrossRef Google scholar
[30]
Ueno Y, Nakamura S, Tajima K. Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160-GHz range for use in ultrahigh-speed all-optical signal processing. Journal of the Optics Society of America B: Optics Physics, 2002, 19(11): 2573-2589
CrossRef Google scholar
[31]
Nielsen M L, Mørk J. Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering. Journal of the Optics Society of America B: Optics Physics, 2004, 21(9): 1606-1619
CrossRef Google scholar
[32]
Dong J J, Fu S N, Zhang X L, Shum P, Zhang L R, Huang D X. Analytical solution for SOA-based all-optical wavelength conversion using transient cross-phase modulation. IEEE Photonics Technology Letters, 2006, 18(24): 2554-2556
CrossRef Google scholar
[33]
Agis F G, Raz O, Zhang S, Tangdiongga E, Zimmermann L, Voigt K, Vyrsokinos C, Stampoulidis L, Dorren H J S. All-optical wavelength conversion at 160 Gbit/s using SOA and silicon-on-insulator photonic circuit. Electronics Letters, 2009, 45(22): 1132-1133
[34]
Manning R J, Yang X, Webb R P, Giller R, Cotter D. Cancellation of non-linear patterning in semiconductor amplifier based switches. In: Proceedings of Optical Amplifiers and Their Applications. 2006, OTuC1
[35]
Yang X L, Manning R J, Webb R P, Giller R, Gunning F, Cotter D. High-speed all-optical signal processing using semiconductor optical amplifiers. In: Proceedings of the 8th International Conference on Transparent Optical Networks (ICTON). 2006, 161-164
CrossRef Google scholar
[36]
Dupertuis M A, Pleumeekers J L, Hessler T P, Selbmann P E, Deveaud B, Dagens B, Emery J Y. Extremely fast high-gain and low-current SOA by optical speed-up at transparency. IEEE Photonics Technology Letters, 2000, 12(11): 1453-1455
CrossRef Google scholar
[37]
Pleumeekers J L, Kauer M, Dreyer K, Burrus C, Dentai A G, Shunk S, Leuthold J, Joyner C H. Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength. IEEE Photonics Technology Letters, 2002, 14(1): 12-14
CrossRef Google scholar
[38]
Matsumoto A, Nishimura K, Utaka K, Usami M. Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation. IEEE Journal of Quantum Electronics, 2006, 42(3): 313-323
CrossRef Google scholar
[39]
Wu Z, Huang Y, Wang Y, Wan J, Ye R. Novel scheme to increase the operation speed of a SOA for all-optical wavelength conversion. Proceedings of SPIE, 2007, 6782: 67822A
[40]
Bramann G, Wünsche H J, Busolt U, Schmidt C, Schlak M, Sartorius B, Nolting H P. Two-wave competition in ultralong semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2005, 41(10): 1260-1267
CrossRef Google scholar
[41]
Runge P, Bunge C A, Petermann K. All-optical wavelength conversion with extinction ratio improvement of 100 Gb/s RZ-signals in ultralong bulk semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2010, 46(6): 937-944
CrossRef Google scholar
[42]
Jungho K L, Laemmlin M, Meuer C, Bimberg D, Eisenstein G. Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2009, 45(3): 240-248
[43]
Yu Y, Huang L R, Xiong M, Tian P, Huang D X. Enhancement of gain recovery rate and cross-gain modulation bandwidth using a two-electrode quantum-dot semiconductor optical amplifier. Journal of the Optical Society of America B: Optical Physics, 2010, 27(11): 2211-2217
CrossRef Google scholar
[44]
Meuer C, Schmidt-Langhorst C, Bonk R, Schmeckebier H, Arsenijevi D, Fiol G, Galperin A, Leuthold J, Schubert C, Bimberg D. 80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering. Optics Express, 2011, 19(6): 5134-5142
CrossRef Pubmed Google scholar
[45]
Contestabile G, Maruta A, Sekiguchi S, Morito K, Sugawara M, Kitayama K. 80 Gb/s multicast wavelength conversion by XGM in a QD-SOA. In: Proceedings of the 36th European Conference on Optical Communication (ECOC). 2010, 1-3
CrossRef Google scholar
[46]
Leclerc O, Lavigne B, Balmefrezol E, Brindel P, Pierre L, Rouvillain D, Seguineau F. Optical regeneration at 40 Gb/s and beyond. Journal of Lightwave Technology, 2003, 21(11): 2779-2790
CrossRef Google scholar
[47]
Phillips I D, Ellis A D, Thiele J, Manning R J, Kelly A E. 40 Gbit/s all-optical data regeneration and demultiplexing with long pattern lengths using a semiconductor nonlinear interferometer. Electronics Letters, 1998, 34(24): 2340-2342
CrossRef Google scholar
[48]
Vivero T, Calabretta N, Monroy I T, Kassar G C, Öhman F, Yvind K, González-Marcos A, Mørk J. 10 Gb/s-NRZ Optical 2R-regeneration in two-section SOA-EA chip. In: Proceedings of the 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society. 2007, 806-807
CrossRef Google scholar
[49]
Pan S L, Huo L, Yang Y F, Lou C Y, Gao Y Z. First and second order PMD mitigation using 3R regeneration. Proceedings of SPIE, 2005, 6021: 602108
CrossRef Google scholar
[50]
Fernandez A, Chao L, Chi J W D. All-optical clock recovery and pulse reshaping using semiconductor optical amplifier and dispersion compensating fiber in a ring cavity. IEEE Photonics Technology Letters, 2008, 20(13): 1148-1150
CrossRef Google scholar
[51]
Tang X F, Cartledge J C, Shen A, Dijk F V, Akrout A, Duan G H. Characterization of all-optical clock recovery for 40 Gb/s RZ-OOK and RZ-DPSK data using mode-lock semiconductor laser. Journal of Lightwave Technology, 2009, 27(20): 4603-4609
CrossRef Google scholar
[52]
Arahira S, Takahashi H, Nakamura K, Yaegashi H, Ogawa Y. Polarization-, wavelength-, and filter-free all-optical clock recovery in a passively mode-lock laser diode with orthogonally pumped polarization-diversity configuration. IEEE Journal of Quantum Electronics, 2009, 45(5): 476-487
CrossRef Google scholar
[53]
Arahira S. Variable-in, variable-out optical clock recovery with an optically injection-locked and regeneratively actively mode-locked laser diode. IEEE Journal of Quantum Electronics, 2011, 47(5): 614-621
CrossRef Google scholar
[54]
Cetina J P, Latkowshi S, Maldonado-Basilio R, Landais P. Wavelength tunability of all-optical clock-recovery based on quantum-dash mode-locked laser diode under injection of a 40-Gbs NRZ data stream. IEEE Photonics Technology Letters, 2011, 23(9): 531-533
CrossRef Google scholar
[55]
Chen L R, Cartledge J C. Mode-locking in a semiconductor fiber laser using cross-absorption modulation in an electroabsorption modulator and application to all-optical clock recovery. Journal of Lightwave Technology, 2008, 26(7): 799-806
CrossRef Google scholar
[56]
Silva M C, Lagrost A, Bramerie L, Gay M, Besnard P, Joindot M, Simon J C, Shen A, Duan G H. Up to 427 GHz all optical frequency down-conversion clock recovery based on quantum-dash Fabry-Perot mode-locked laser. Journal of Lightwave Technology, 2011, 29(4): 609-615
CrossRef Google scholar
[57]
Ohno T, Sato K, Iga R, Kondo Y, Ito T, Furuta T, Yoshino K, Ito H. Recovery of 160 GHz optical clock from 160 Gbit/s data stream using modelocked laser diode. Electronics Letters, 2004, 40(4): 265-266
CrossRef Google scholar
[58]
Tang X F, Cartledge J C, Shen A, Dijk F V, Duan G H. All-optical clock recovery for 40-Gbs MZM-generated NRZ-DPSK signals using a self-pulsating DBR laser. IEEE Photonics Technology Letters, 2008, 20(17): 1443-1445
CrossRef Google scholar
[59]
Monfils L, Cartedge J C. Detailed theoretical and experimental characterization of 10 Gb/s clock recovery using a Q-switched self-pulsating laser. Journal of Lightwave Technology, 2009, 27(5): 619-626
CrossRef Google scholar
[60]
Sun Y, Pan J Q, Zhao L J, Chen W X, Wang W, Wang L, Zhao X F, Lou C Y. All-optical clock recovery for 20 Gb/s using an amplified feedback DFB laser. IEEE Journal of Lightwave Technology, 2010, 28(17): 2521-2524
CrossRef Google scholar
[61]
Wang L, Zhao X, Lou C, Lu D, Sun Y, Zhao L, Wang W. 40 Gbits/s all-optical clock recovery for degraded signals using an amplified feedback laser. Applied Optics, 2010, 49(34): 6577-6581
CrossRef Pubmed Google scholar
[62]
Tang X F, Cartledge J C, Shen A, Dijk F V, Duan G H. 40-Gbs polarization-insensitive all-optical clock recovery using a quantum-dot Fabry-Perot laser assisted by an SOA and bandpass filtering. IEEE Photonics Technology Letters, 2008, 20(24): 2051-2053
CrossRef Google scholar
[63]
Wang F, Zhang X L, Xu E M, Zhang Y. A novel all-optical clock recovery scheme. In: Proceedings of Communications and Photonics Conference and Exhibition (ACP) 2009. 2009, 1-6
[64]
Cartledge J C, Tang X F, Yañez M, Shen A, Akrout A, Duan G H. All-optical clock recovery using a quantum-dash Fabry-Perot laser. In: Proceedings of IEEE Topic Meeting on Microwave Photonics (MWP). 2010, 201-204
[65]
Spyropoulou M, Pleros N, Papadimitriou G, Tomkos I, Pomportsis A. Multi-wavelength clock recovery based on a Fabry-Perot filter and a quantum-dot semiconductor optical amplifier. In: Proceedings of the 10th Anniversary International Conference on Transparent Optical Networks. 2008, 128-131
[66]
Wang F, Yu Y, Huang X, Zhang X L. Single and multiwavelength all-optical clock recovery using Fabry-Pérot semiconductor optical amplifier. IEEE Photonics Technology Letters, 2009, 21(16): 1109-1111
CrossRef Google scholar
[67]
Parra-Cetina J, Latkowski S, Maldonado-Basilio R, Landais P. Timing jitter and all-optical clock recovery based on a quantum-dash Fabry-Pérot semiconductor laser. In: Proceedings of the 12th Anniversary International Conference on Transparent Optical Networks. 2010, 1-4
CrossRef Google scholar
[68]
Poustie A. SOA-based all-optical processing. In: Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference. 2007, OWF1
[69]
Wolfson D, Hansen P B, Kioch A, Stubkjaer K E. All-optical 2R regeneration based on interferometric structure incorporating semiconductor optical amplifiers. Electronics Letters, 1999, 35(1): 59-60
CrossRef Google scholar
[70]
Gavioli G, Thomsen B C, Mikhailov V, Bayvel P. Cascadability properties of optical 3R regenerators based on SOAs. Journal of Lightwave Technology, 2007, 25(9): 2766-2775
CrossRef Google scholar
[71]
Duan P X, Chen L G, Zhang S J, Zhou X L, Liu Y Z, Liu Y. All-optical 2R regeneration based on self-induced polarization rotation in a single semiconductor optical amplifier. Chinese Science Bulletin, 2009, 54(20): 3704-3708
CrossRef Google scholar
[72]
Zhu Z, Funabashi M, Pan Z, Paraschis L, Yoo S J. 1000 cascaded stages of optical 3R regeneration with SOA-MZI-based clock enhancement to achieve 10-Gb/s 125000-km dispersion uncompensated transmission. IEEE Photonics Technology Letters, 2006, 18(20): 2159-2161
CrossRef Google scholar
[73]
Zhao X F, Wang L, Lu D, Lou C Y, Sun Y, Zhao L J, Wang W. 40-Gb/s all-optical 3R regeneration with semiconductor devices. In: Proceedings of the 19th Annual Wireless and Optical Communications Conference (WOCC). 2010, 1-3
CrossRef Google scholar
[74]
Contestabile G, Proietti R, Presi M, Ciaramella E. 40Gb/s wavelength preserving 2R regeneration for both RZ and NRZ signals. In: Proceedings of Optical Fiber Communication Conference. 2008, OWK1
[75]
Errico A D, Contestabile G, Proietti R, Presi M, Ciaramella E, Bramerie L, Gay M, Lobo S, Joindot M, Simon J C, Massoubre D, Nguyen H T, Oudar J L. 2R optical regeneration combining XGC in a SOA and a saturable absorber. In: Proceedings of Optical Fiber Communication Conference. 2008, OWK4
[76]
Contestabile G. All-optical signal regeneration using SOAs. In: Proceedings of Asia Communications and Photonics Conference and Exhibition. 2010, 7-8
CrossRef Google scholar
[77]
Chan L Y, Qureshi K K, Wai P K A, Moses B, Lui L F K, Tam H Y, Demokan M S. All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate. IEEE Photonics Technology Letters, 2003, 15(4): 593-595
CrossRef Google scholar
[78]
Martinez J M, Ramos F, Marti J. All-optical packet header processor based on cascaded SOA-MZIs. Electronics letters, 2004, 40(14): 894-895
CrossRef Google scholar
[79]
Fjelde T, Kloch A, Wolfson D, Dagens B, Coquelin A, Guillemot I, Gaborit F, Poingt F, Renaud M. Novel scheme for simple label-swapping employing XOR logic in an integrated interferometer wavelength converter. IEEE Photonics Technology Letters, 2001, 13(7): 750-752
CrossRef Google scholar
[80]
Bintjas C, Pleros N, Yiannopoulos K, Theophilopoulos G, Kalyvas M, Avramopoulos H, Guekos G. All-optical packet address and payload separation. IEEE photonic technology letters, 2002, 14(12): 1728-1730
CrossRef Google scholar
[81]
Martinez J M, Liu Y, Clavero R, Koonen A M J, Herrera J, Ramos F, Dorren H J S, Marti J. All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks. IEEE Photonics Technology Letters, 2007, 19(17): 1316-1318
CrossRef Google scholar
[82]
Kim J H, Jhon Y M, Byun Y T, Lee S, Woo D H, Kim S H. All-optical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photonics Technology Letters, 2002, 14(10): 1436-1438
CrossRef Google scholar
[83]
Kim S H, Kim J H, Yu B G, Byun Y T, Jeon Y M, Lee S, Woo D H. All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers. Electronics Letters, 2005, 41(18): 1027-1028
CrossRef Google scholar
[84]
Reis C, Dionísio R P, Neto B, Teixeira A, André P. All-optical XOR based on integrated MZI-SOA with Co and counter-propagation scheme. In: Proceedings of ICTON Mediterranean Winter Conference. 2009, 1-4
CrossRef Google scholar
[85]
Yang X L, Weng Q W, Hu W S. High-speed all-optical XOR gates using semiconductor optical amplifiers in ultrafast nonlinear interferometers. Frontiers of Optoelectronics in China, 2010, 3(3): 245-252
CrossRef Google scholar
[86]
Li Z, Liu Y, Zhang S, Ju H, de Waardt H, Khoe G D, Dorren H J S, Lenstra D. All-optical logic gates using semiconductor optical amplifier assisted by optical filter. Electronics Letters, 2005, 41(25): 1397-1399
CrossRef Google scholar
[87]
Han L Y, Zhang H Y, Jiang H, Wen H, Guo Y L. All-optical NOR and OR logic gates based on cross-polarization modulation in a semiconductor optical amplifier. Optics Engineering, 2008, 47(1): 015001
[88]
Li Z H, Li G F. Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technology Letters, 2006, 18(12): 1341-1343
CrossRef Google scholar
[89]
Li P L, Huang D X, Zhang X L. SOA-based ultrafast multifunctional all-optical logic gates with PolSK modulated signals. IEEE Journal of Quantum Electronics, 2009, 45(12): 1542-1550
CrossRef Google scholar
[90]
Zhang X L, Xu J, Dong J J, Huang D X. All-optical logic gates based on semiconductor optical amplifiers and tunable filters. Lecture Notes in Computer Science, 2009, 5882: 19-29
CrossRef Google scholar
[91]
Dong J, Zhang X, Wang F, Yu Y, Huang D. Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier. Electronics Letters, 2008, 44(12): 763-764
CrossRef Google scholar
[92]
Tan H N, Matsuura M, Kishi N. Wavelength-shift-free multi-channel width-tunable NRZ-to-RZ modulation format conversion using a single SOA-based Sagnac interferometer. In: Proceedings of the Optoelectronics and Communications Conference. 2010, 208—209
[93]
Astar W, Carter G M. 10 Gbit/s RZ-OOK to RZ-BPSK format conversion using SOA and synchronous pulse carver. Electronics Letters, 2008, 44(5): 369-370
CrossRef Google scholar
[94]
Li P L, Huang D X, Zhang X L, Chen H M. Ultrahigh-speed multifunctional all-optical logic gates based on FWM in SOAs with PolSK modulated signals. In: Proceedings of Optical Fiber Communication Conference. 2008, 1-3
[95]
Nissanka S M, Maruta A, Mitani S, Shimizu K, Miyahara T, Aoyagi T, Hatta T, Sugitatsu A, Kitayama K I. All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using integrated SOA three-arm-MZI wavelength converter. In: Proceedings of Optical Fiber Communication Conference. 2009, 1-3
[96]
Wu B B, Fu S N, Wu J, Shum P, Ngo N Q, Xu K, Hong X B, Lin J T. 40 Gb/s multifunction optical format conversion module with wavelength multicast capability using nondegenerate four-wave mixing in a semiconductor optical amplifier. Journal of Lightwave Technology, 2009, 27(20): 4446-4454
CrossRef Google scholar
[97]
Smit M K, Bente E A J M, Hill M T, Karouta F, Leijtens X J M, Oei Y S, van der Tol J J G M, Notzel R, Koenraad P M, Dorren H S, de Waardt H, Koonen A M J, Khoe G D. Current status and prospects of photonic IC technology. In: Proceedings of IEEE Conference on Indium Phosphide and Related Materials. 2007, 3-6
CrossRef Google scholar
[98]
Liu Y, Nan Y, Wang B J, Zhou D B, An X, Bian J, Pan J Q, Zhao L J, Wang W. Monolithic integration of widely tunable sampled grating DBR laser with tilted semiconductor optical amplifier. Journal of Semiconductors, 2010, 31(7): 074003
CrossRef Google scholar
[99]
Liu H B, Zhao L J, Pan J Q, Zhu H L, Zhou F, Wang B J, Wang W. Monolithic integration of sampled grating DBR with electroabsorption modulator by combining selective-area-growth MOCVD and quantum-well intermixing. Chinese Physics Letters, 2008, 25(10): 3670-3672
CrossRef Google scholar
[100]
Kang I, Rasras M, Buhl L, Dinu M, Cabot S, Cappuzzo M, Gomez L T, Chen Y F, Patel S S, Dutta N, Piccirilli A, Jaques J, Giles C R. Generation of 173-Gb/s single-polarization QPSK signals by all-optical format conversion using a photonic integrated device. In: Proceedings of the 35th European Conference on Optical Communication (ECOC). 2009, 1-2
[101]
Poustie A. Hybrid integration for advanced photonic devices. In: Proceedings of European Conference on Integrated Optics (ECIO). 2008, WeB1

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2011CB301705), the National Natural Science Foundation of China (Grant Nos. 60925019, 60907008, and 61090393). This work was also partially supported by the Fundamental Research Funds for the Central University (No. ZYGX2009Z002).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(368 KB)

Accesses

Citations

Detail

Sections
Recommended

/