Photonic nano-device for optical signal processing
Xinwan LI, Zehua HONG, Xiaomeng SUN
Photonic nano-device for optical signal processing
Micro/nanostructure photonic devices offer a variety of enabling properties, including low power-consumption, cost-efficient, compact size, and reliability. These distinctive features have been exploited in a wealth of applications ranging from telecommunication and optical interconnect to photonic network on chip. In this paper, we review two main classes of micro/nanostructure photonic devices, to provide the kinds of functions for optical signal processing.
photonic nano-device / optical signal processing / micro/nano optical fiber / silicon plasmonic waveguide
[1] |
Dorren H, Herrera J, Raz O, Tangdiongga E, Liu Y, Marti J, Ramos F, Maxwell G, Poustie A, Mulvad H C H, Hill M T, de Waardt H, Koonen A M J, Khoe G D. All-optical devices for ultrafast packet switching. In: Proceedings of IEEE LEOS’07. 2007, 729–730
|
[2] |
Matsumoto M. A fiber-based all-optical 3R regenerator for DPSK signals. IEEE Photonics Technology Letters, 2007, 19(5): 273–275
|
[3] |
Wang J, Sun J. All-optical logic XOR gate for high-speed CSRZ-DPSK signals based on cSFG/DFG in PPLN waveguide. Electronics Letters, 2010, 46(4): 288–290
|
[4] |
Ji H, Pu M H, Hu H, Galili M, Oxenløwe L K, Yvind K, Hvam J M, Jeppesen P. Optical waveform sampling and error-free demultiplexing of 1.28 Tb/s serial data in a nanoengineered silicon waveguide. Journal of Lightwave Technology, 2011, 29(4): 426–431
|
[5] |
Koos C, Jacome L, Poulton C, Leuthold J, Freude W. Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Optics Express, 2007, 15(10): 5976–5990
|
[6] |
Su Y, Li Q, Liu F F, Zhang Z Y, Qiu M. Optical signal processing in silicon nano-waveguides. In: Proceedings of Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology. 2008, 1–2
CrossRef
Google scholar
|
[7] |
Prabhu A M, Van V, Herman W N, Ho P T. Compact silicon microring-assisted directional couplers for optical signal processing applications. Optics Letters, 2009, 34(8): 1249–1251
|
[8] |
Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653
|
[9] |
Chen L, Shakya J, Lipson M. Subwavelength confinement in an integrated metal slot waveguide on silicon. Optics Letters, 2006, 31(14): 2133–2135
|
[10] |
Yeom D I, Mägi E C, Lamont M R E, Roelens M A F, Fu L B, Eggleton B J. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Optics Letters, 2008, 33(7): 660–662
|
[11] |
Grubsky V, Savchenko A, Glass micro-fibers for efficient third harmonic generation. Optics Express, 2005, 13(18): 6798–6806
|
[12] |
Broderick N G. Optical snakes and ladders: dispersion and nonlinearity in microcoil resonators. Optics Express, 2008, 16(20): 16247–16254
|
[13] |
Jiang X S, Chen Y, Vienne G, Tong L M. All-fiber add-drop filters based on microfiber knot resonators. Optics letters, 2007, 32(12): 1710–1712
|
[14] |
Pöllinger M, Rauschenbeutel A. All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect. Optics Express, 2010, 18(17): 17764–17775
|
[15] |
Wang Z C, Tang Y B, Wosinski L. High efficiency grating couplers for silicon-on-insulator photonic circuits. In: Proceedings of the 36th European Conference and Exhibition on Optical Communication (ECOC). 2010, 1–3
|
[16] |
Hong Z H, Li X W, Zhou L J, Shen X W, Shen J G, Li S G, Chen J P. Coupling characteristics between two conical micro/nano fibers: simulation and experiment. Optics Express, 2011, 19(5): 3854–3861
|
[17] |
Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 2003, 426(6968): 816–819
|
[18] |
Leon-Saval S, Birks T, Wadsworth W, Russell P St. J, Mason M. Supercontinuum generation in submicron fibre waveguides. Optics Express, 2004, 12(13): 2864–2869
|
[19] |
Mägi E C, Fu L B, Nguyen H C, Lamont M R, Yeom D I, Eggleton B J. Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers. Optics Express, 2007, 15(16): 10324–10329
|
[20] |
Tong L M, Hu L L, Zhang J J, Qiu J R, Yang Q, Lou J Y, Shen Y H, He J L, Ye Z Z. Photonic nanowires directly drawn from bulk glasses. Optics Express, 2006, 14(1): 82–87
|
[21] |
Brambilla G, Koizumi F, Feng X, Richardson D J. Compound-glass optical nanowires. Electronics Letters, 2005, 41(7): 400–402
|
[22] |
Guo M L, Shi J C, Li B J. Polymer-based micro/nanowire structures for three-dimensional photonic integrations. Optics letters, 2008, 33(18): 2104–2106
|
[23] |
Grubsky V, Savchenko A. Glass micro-fibers for efficient third harmonic generation. Optics Express, 2005, 13(18): 6798–6806
|
[24] |
Lou J Y, Tong L M, Ye Z Z. Modeling of silica nanowires for optical sensing. Optics Express, 2005, 13(6): 2135–2140
|
[25] |
Brambilla G, Finazzi V, Richardson D. Ultra-low-loss optical fiber nanotapers. Optics Express, 2004, 12(10): 2258–2263
|
[26] |
Lou N, Jha R, Domínguez-Juárez J L, Finazzi V, Villatoro J, Badenes G, Pruneri V. Embedded optical micro/nano-fibers for stable devices. Optics letters, 2010, 35(4): 571–573
|
[27] |
Tong L M, Lou J Y, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Optics Express, 2004, 12(6): 1025–1035
|
[28] |
Sumetsky M, Dulashko Y, Fini J M, Hale A. Optical microfiber loop resonator. Applied Physics Letters, 2005, 86(16): 161108
|
[29] |
Chuo S M, Chen J H, Wang L A. Feasibility study of making patterned optical devices based on microfibers for optical interconnect applications. Photonics Technology Letters, 2010, 22(6): 395–397
|
[30] |
Liang W, Huang Y Y, Xu Y, Lee R K, Yariv A. Highly sensitive fiber Bragg grating refractive index sensors. Applied Physics Letters, 2005, 86(15): 151122
|
[31] |
Xuan H F, Jin W, Zhang M. CO2 laser induced long period gratings in optical microfibers. Optics Express, 2009, 17(24): 21882–21890
|
[32] |
Yu X C, Li X W, Zhang Y, Zhou L J, Jiang W N, Chen J P. Fabrication of microfiber-based Bragg gratings with ultraviolet-light exposure. In: Proceedings of Optical Fiber Communication Conference 2011. 2011, OTuC2
|
[33] |
Lu Z L, Prather D W. Total internal reflection-evanescent coupler for fiber-to-waveguide integration of planar optoelectric devices. Optics letters, 2004, 29(15): 1748–1750
|
[34] |
Smith B T, Feng D Z, Lei H B, Zheng D W, Fong J, Asghari M. Fundamentals of silicon photonic devices. http://www.kotura.com/pdf/KOTURA_Fundamentals_of_Silicon_Photonic_Devices.pdf
|
[35] |
Rong H S, Xu S B, Cohen O, Raday O, Lee M, Sih V, Paniccia M. A cascaded silicon Raman laser. Nature Photonics, 2008, 2(3): 170–174
|
[36] |
Park H, Fang A W, Liang D, Kuo Y H, Chang H H, Koch B R, Chen H W, Sysak M N, Jones R, Bowers J E. Photonic integration on the hybrid silicon evanescent device platform. Advances in Optical Technologies, 2008, 682978
CrossRef
Google scholar
|
[37] |
Liu A, Jones R, Liao L, Samara-Rubio D, Rubin D, Cohen O, Nicolaescu R, Paniccia M. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 2004, 427(6975): 615–618
|
[38] |
Kang Y M, Liu H D, Morse M, Paniccia M J, Zadka M, Litski S, Sarid G, Pauchard A, Kuo Y H, Chen H W, Zaoui W S, Bowers J E, Beling A, McIntosh D C, Zheng X G, Campbell J C. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product. Nature Photonics, 2009, 3(1): 59–63
|
[39] |
Kou Q, Yesilyurt I, Studer V, Belotti M, Cambril E, Chen Y. On-chip optical components and microfluidic systems. Micro and Nano Engineering, 2004, 73-74(1): 876–880
|
[40] |
Iwai H. CMOS downsizing toward sub-10 nm. Solid-State Electronics, 2004, 48(4): 497–503
|
[41] |
Bohr M. Intel’s silicon research and development pipeline. Technical Report, 2006
|
[42] |
Miller D A B. Rationale and challenges for optical interconnects to electronic chips. Proceedings of the IEEE, 2000, 88(6): 728–749
|
[43] |
Haurylau M, Chen H, Zhang J D, Chen G Q, Nelson N A, Albonesi D H, Friedman E G, Fauchet P M. On-chip optical interconnect roadmap: challenges and critical directions. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1699–1705
|
[44] |
Tominaga J, Mihalcea C, Büchel D, Fukuda H, Nakano T, Atoda N, Fuji H, Kikukawa T. Local plasmon photonic transistor. Applied Physics Letters, 2001, 78(17): 2417–2419
|
[45] |
Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311(5758): 189–193
|
[46] |
Avrutsky I, Soref R, Buchwald W. Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap. Optics Express, 2010, 18(1): 348–363
|
[47] |
Agranovich V M, Mills D L. Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces. New York: Elsevier, 1982
|
[48] |
Agranovich V M, Mills D L. Surface polaritons: electromagnetic waves at surfaces and interfaces. Journal of the Optical Society of America B: Optical Physics, 1984, 1(3): 410
|
[49] |
Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics, 2010, 4(2): 83–91
|
[50] |
Moreno E, Garcia-Vidal F J, Rodrigo S G, Martin-Moreno L, Bozhevolnyi S I. Channel plasmon-polaritons: modal shape, dispersion, and losses. Optics Letters, 2006, 31(23): 3447–3449
|
[51] |
Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440(7083): 508–511
|
[52] |
Pile D F P, Gramotnev D K. Channel plasmon-polariton in a triangular groove on a metal surface. Optics Letters, 2004, 29(10): 1069–1071
|
[53] |
Veronis G, Fan S H. Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Optics Letters, 2005, 30(24): 3359–3361
|
[54] |
Liu L, Han Z H, He S L. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645–6650
|
[55] |
Pile D F P, Gramotnev D K,Oulton R F, Zhang X. On long-range plasmonic modes in metallic gaps. Optics Express, 2007, 15(21): 13669–13674
|
[56] |
Verhagen E, Polman A, Kuipers L K. Nanofocusing in laterally tapered plasmonic waveguides. Optics Express, 2008, 16(1): 45–57
|
[57] |
Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics, 2008, 2(8): 496–500
|
[58] |
Alam M Z, Meier J, Aitchison J S, Mojahedi M. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express, 2010, 18(12): 12971–12979
|
[59] |
Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal dielectric-gap optical waveguides. IEEE of Photonics Technology Letters, 2009, 21(6): 362–364
|
[60] |
Dionne J A, Diest K, Sweatlock A L, Atwater H A. PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. Nano Letters, 2009, 9(2): 897–902
|
[61] |
Veronis G, Fan S. Bends and splitters in subwavelength metal-dielectric-metal plasmonic waveguides. Applied Physics Letters, 2005, 87(13): 131102
|
[62] |
Wang B, Wang G. Plasmon Bragg reflectors and nanocavities on flat metallic surface. Applied Physics Letters, 2005, 87(1): 013107
|
[63] |
Thylén L, Qiu M, Anand S. Photonic crystals — a step towards integrated circuits for photonics. ChemPhysChem, 2004, 5(9): 1268–1283
|
[64] |
Mekis A, Chen J C, Kurland I, Fan S H, Villeneuve P R, Joannopoulos J D. High transmission through sharp bends in photonic crystal waveguides. Physical Review Letters, 1996, 77(18): 3787–3790
|
[65] |
Smajic J, Hafner C, Erni D. Design and optimization of an achromatic photonic crystal bend. Optics Express, 2003, 11(12): 1378–1384
|
[66] |
Han S Z, Tian J, Ren C, Xu X S, Li Z Y, Cheng B Y, Zhang D Z. A Y-branch photonic crystal slab waveguide with an ultrashort interport interval. Chinese Physics Letters, 2005, 22(8): 1934
|
[67] |
Faraon A, Waks E, Englund D. Efficient photonic crystal cavity-waveguide couplers. Applied Physics Letters, 2007, 90(7): 073102
|
[68] |
Ogusu K, Takayama K. Transmission characteristics of photonic crystal waveguides with stubs and their application to optical filters. Optics Letters, 2007, 32(15): 2185–2187
|
[69] |
Fujisawa T, Koshiba M. Finite-element modeling of nonlinear interferometers based on photonic-crystal waveguides for all-optical signal processing. Journal of Lightwave Technology, 2006, 24(1): 617–623
|
[70] |
Tsuchizawa T, Yamada K, Fukuda H, Watanabe T, Takahashi J, Takahashi M, Shoji T, Tamechika E, Itabashi S, Morita H. Microphotonics devices based on silicon microfabrication technology. IEEE Journal of Selected Topics in Quantum Electron, 2005, 11(1): 232–240
|
[71] |
Almeida V R, Xu Q, Barrios C A, Lipson M, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
|
[72] |
Sun X M, Zhou L J, Li X W, Hong Z H, Chen J P. Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide. Applied Optics, 2011, 143309 (accepted)
|
[73] |
Galarza M, de Mesel K, Verstuyft S, Aramburu C, Lopez-Amo M, Moerman I, Van Daele P, Baets R. A new spot-size converter concept using fiber-matched antiresonant reflecting optical waveguides. Journal of Lightwave Technology, 2003, 21(1): 269–274
|
[74] |
Almeida V R, Panepucci R, Lipson M. Nanotaper for compact mode conversion. Optics Letters, 2003, 28(15): 1302–1304
|
[75] |
Taillaert D, Bienstman P, Baets R. Compact efficient broadband grating coupler for silicon-on-insulator waveguides. Optics Letters, 2004, 29(23): 2749–2751
|
/
〈 | 〉 |