Photonic crystal fibers for supercontinuumβgeneration

Xian ZHU, Xinben ZHANG, Jinggang PENG, Xiang CHEN, Jinyan LI

PDF(258 KB)
PDF(258 KB)
Front. Optoelectron. ›› 2011, Vol. 4 ›› Issue (4) : 415-419. DOI: 10.1007/s12200-011-0134-0
REVIEW ARTICLE
REVIEW ARTICLE

Photonic crystal fibers for supercontinuumβgeneration

Author information +
History +

Abstract

Photonic crystal fibers (PCFs) present a wavelength-scale periodic microstructure along their length. Their core and two-dimensional photonic crystal might be based on varied geometries and materials, allowing supercontinuum (SC) generation due to nonlinear effects in an extremely large wavelength range. In this paper we have reviewed PCFs utilized for SC generation. Fiber fabrication for SC generation is present. Spectral broadening mechanisms are also described in brief. Particular attention is as well as paid to PCFs including uniform PCFs, cascaded fibers, tapered fibers and PCFs with special material doped, which are commonly used to generate SC.

Keywords

photonic crystal fibers (PCFs) / supercontinuum (SC) / PCF fabrication / nonlinear optics / tapered PCF / cascaded PCF / Ge-doped core

Cite this article

Download citation ▾
Xian ZHU, Xinben ZHANG, Jinggang PENG, Xiang CHEN, Jinyan LI. Photonic crystal fibers for supercontinuumβgeneration. Front Optoelec Chin, 2011, 4(4): 415‒419 https://doi.org/10.1007/s12200-011-0134-0

References

[1]
Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 2006, 78(4): 1135–1184
CrossRef Google scholar
[2]
Genty G, Coen S, Dudley J M. Fiber supercontinuum sources. Journal of the Optical Society of America B, Optical Physics, 2007, 24(8): 1771–1785
CrossRef Google scholar
[3]
Cerqueira A S Jr. Recent progress and novel applications of photonic crystal fibers.Reports on Progress in Physics, 2010, 73(2): 024401–024422
[4]
Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 2000, 25(1): 25–27
CrossRef Google scholar
[5]
Frosz M H. Supercontinuum Generation in Photonic Crystal Fibres: Modelling and Dispersion Engineering for Spectral Shaping. Department of Communications, Optics & Materials. Technical University of Denmark, 2006
[6]
Moselund P M. Long-Pulse Supercontinuum Light Sources. Department of Photonics Engineering. Technical University of Denmark, 2009
[7]
Russell P St J.Photonic-crystal fibers. Journal of Lightwave Technology, 2006, 24(12): 4729–4749
CrossRef Google scholar
[8]
Cascante J V, Torres P S, Diez A, Andres M V. Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber. Applied Physics. B: Lasers and Optics, 2010, 98(2-3): 371–376
CrossRef Google scholar
[9]
Travers J C, Rulkov A B, Cumberland B A, Popov S V, Taylor J R. Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser. Optics Express, 2008, 16(19): 14435–14447
CrossRef Google scholar
[10]
Travers J C, Popov S V, Taylor J R. Extended blue supercontinuum generation in cascaded holey fibers. Optics Letters, 2005, 30(23): 3132–3135
CrossRef Google scholar
[11]
Mussot A, Kudlinski A, Beugnot J C, Sylvester T, Gonzalez H M, Bouwmans G. Extended blue side of flat supercontinuum generation in PCFs with a CW Yb fiber laser. In: IEEE/LEOS Winter Topical Meeting Series, 2008, 178–179
[12]
Cumberland B A, Travers J C, Popov S V, Taylor J R. Toward visible cw-pumped supercontinua. Optics Letters, 2008, 33(18): 2122–2124
CrossRef Google scholar
[13]
Skryabin D V, Gorbach A V. Colloquium looking at a soliton through the prism of optical supercontinuum. Reviews of Modern Physics, 2010, 82(2): 1287–1299
CrossRef Google scholar
[14]
Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J, Coen S. Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping. Journal of the Optical Society of America. B, Optical Physics, 2002, 19(4): 756–771
[15]
Ghosh D, Roy S, Pal M, Leproux P, Viale P, Tombelaine V, Bhadra S K. Blue-extended sub-nanosecond supercontinuum generation in simply designed nonlinear microstructured optical fibers. Journal of Lightwave Technology, 2011, 29(2): 146–152
CrossRef Google scholar
[16]
Guo C Y, Ruan S C, Yan P G, Pan E, Wei H F. Flat supercontinuum generation in cascaded fibers pumped by a continuous wave laser. Optics Express, 2010, 18(11): 11046–11051
[17]
Travers J C. Blue extension of optical fibre supercontinuum generation. Journal of Optics, 2010, 12(11): 113001–113020
[18]
Kudlinski A, George A K, Knight J C, Travers J C, Rulkov A B, Popov S V, Taylor J R. Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Optics Express, 2006, 14(12): 5715–5722
CrossRef Google scholar
[19]
Stark S P, Podlipensky A, Joly N Y, Russell P S J. Ultraviolet-enhanced supercontinuum generation. Journal of the Optical Society of America B, Optical Physics, 2009, 27(3): 592–598
CrossRef Google scholar
[20]
Kudlinski A, Bouwmans G, Vanvincq O, Quiquempois Y, Rouge A L, Bigot L, Melin G, Mussot A. White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers. Optics Letters, 2009, 34(23):3631–3633
CrossRef Google scholar
[21]
Bethge J, Husakou A, Mitschke F, Noack F, Griebner U, Steinmeyer G, Herrmann J. Two-octave supercontinuum generation in a water-filled photonic crystal fiber. Optics Express, 2010, 18(6): 6230–6240
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(258 KB)

Accesses

Citations

Detail

Sections
Recommended

/