Hybrid fabricating of silica micro/nanofibers
Ping ZHAO, Zhao WU, Kaisheng CHEN, Xinliang ZHANG
Hybrid fabricating of silica micro/nanofibers
We report a hybrid two-step approach for fabricating silica micro/nanofibers with different diameters (the minimum one down to 180 nm). Due to tapering and etching techniques introduced to this approach, the time is reduced from hundreds of minutes to several minutes to manufacture silica nanofibers by etching and the complexity of tapering mechanical system is brought down, because this approach has the ability to control the micro/nanofiber diameter on a nanometer-scale. Uniform nanofibers with losses as low as 0.05 dB/mm at 1.55 μm wavelength are obtained suggesting the advantage of the hybrid approach to build up micro/nanofiber-based devices, especially in locally changing the structure of micro/nanofiber.
nano-fabrication / micro/nanofiber / sub-wavelength-diameter fiber / nanophotonics
[1] |
Gattass R R, Svacha G T, Tong L M, Mazur E. Supercontinuum generation in submicrometer diameter silica fibers. Optics Express, 2006, 14(20): 9408-9414
CrossRef
Pubmed
Google scholar
|
[2] |
Zhang Y, Xu E M, Huang D X, Zhang X L. All-optical format conversion from RZ to NRZ utilizing microfiber resonator. IEEE Photonics Technology Letters, 2009, 21(17): 1202-1204
CrossRef
Google scholar
|
[3] |
Zhang Y, Zhang X L, Chen G J, Xu E M, Huang D X. A microwave photonic notch filter using a microfiber ring resonator. Chinese Physics Letters, 2010, 27(7): 074207
CrossRef
Google scholar
|
[4] |
Wang Z, Chiang K S, Liu Q. All-fiber tunable microwave photonic filter based on a cladding-mode coupler. IEEE Photonics Technology Letters, 2010, 22(16): 1241-1243
CrossRef
Google scholar
|
[5] |
Sumetsky M, Windeler R S, Dulashko Y, Fan X. Optical liquid ring resonator sensor. Optics Express, 2007, 15(22): 14376-14381
CrossRef
Pubmed
Google scholar
|
[6] |
Kien F L, Balykin V I, Hakuta K. Scattering of an evanescent light field by a single cesium atom near a nanofiber. Physical Review A, 2006, 73(1): 013819
|
[7] |
Tsou P H, Chou C K, Saldana S M, Hung M C, Kameoka J. The fabrication and testing of electrospun silica nanofiber membranes for the detection of proteins. Nanotechnology, 2008, 19(44): 445714
CrossRef
Pubmed
Google scholar
|
[8] |
Klimov V V, Ducloy M. Spontaneous emission rate of an excited atom placed near a nanofiber. Physical Review A, 2004, 69(1): 013812
CrossRef
Google scholar
|
[9] |
Tong L M, Lou J Y, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Optics Express, 2004, 12(6): 1025-1035
CrossRef
Pubmed
Google scholar
|
[10] |
Wiederhecker G S, Cordeiro C M B, Couny F, Benabid F, Maier S A, Knight J C, Cruz C H B, Fragnito H L. Field enhancement within an optical fibre with a subwavelength air core. Nature Photonics, 2007, 1(2): 115-118
CrossRef
Google scholar
|
[11] |
Foster M A, Turner A C, Lipson M, Gaeta A L. Nonlinear optics in photonic nanowires. Optics Express, 2008, 16(2): 1300-1320
CrossRef
Pubmed
Google scholar
|
[12] |
Tong L, Gattass R R, Ashcom J B, He S, Lou J Y, Shen M Y, Maxwell I, Mazur E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 2003, 426(6968): 816-819
CrossRef
Pubmed
Google scholar
|
[13] |
Tong L M, Lou J Y, Ye Z Z, Svacha G T, Mazur E. Self-modulated taper drawing of silica nanowires. Nanotechnology, 2005, 16(9): 1445-1448
CrossRef
Google scholar
|
[14] |
Brambilla G, Koizumi F, Feng X, Richardson D J. Compound-glass optical nanowires. Electronics Letters, 2005, 41(7): 400-402
CrossRef
Google scholar
|
[15] |
Tong L M, Hu L L, Zhang J J, Qiu J R, Yang Q, Lou J Y, Shen Y H, He J L, Ye Z Z. Photonic nanowires directly drawn from bulk glasses. Optics Express, 2006, 14(1): 82-87
CrossRef
Pubmed
Google scholar
|
[16] |
Chaudhari C, Suzuki T, Ohishi Y. Design of zero chromatic dispersion chalcogenide As2S3 glass nanofibers. Journal of Lightwave Technology, 2009, 27(12): 2095-2099
CrossRef
Google scholar
|
[17] |
Xuan H F, Jin W, Zhang M. CO2 laser induced long period gratings in optical microfibers. Optics Express, 2009, 17(24): 21882-21890
CrossRef
Pubmed
Google scholar
|
[18] |
Fang X, Liao C R, Wang D N. Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Optics Letters, 2010, 35(7): 1007-1009
CrossRef
Pubmed
Google scholar
|
[19] |
Zhang Y, Lin B, Tjin S C, Zhang H, Wang G, Shum P, Zhang X. Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating. Optics Express, 2010, 18(25): 26345-26350
CrossRef
Pubmed
Google scholar
|
[20] |
Haddock H S, Shankar P M, Mutharasan R. Fabrication of biconical tapered optical fibers using hydrofluoric acid. Materials Science and Engineering B, 2003, 97(1): 87-93
CrossRef
Google scholar
|
[21] |
Zhang E J, Sacher W D, Poon J K S. Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers. Optics Express, 2010, 18(21): 22593-22598
CrossRef
Pubmed
Google scholar
|
[22] |
Vienne G, Li Y, Tong L. Effect of host polymer on microfiber resonator. IEEE Photonics Technology Letters, 2007, 19(18): 1386-1388
CrossRef
Google scholar
|
[23] |
Jiang X S, Tong L M, Vienne G, Guo X, Tsao A, Yang Q, Yang D R. Demonstration of optical microfiber knot resonators. Applied Physics Letters, 2006, 88(22): 223501
CrossRef
Pubmed
Google scholar
|
[24] |
Jiang X S, Chen Y, Vienne G, Tong L M. All-fiber add-drop filters based on microfiber knot resonators. Optics Letters, 2007, 32(12): 1710-1712
CrossRef
Pubmed
Google scholar
|
[25] |
Tong L M, Lou J Y, Gattass R R, He S, Chen X W, Liu L, Mazur E. Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Letters, 2005, 5(2): 259-262
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |