A novel architecture of optical code label generation and recognition for optical packet switching

Bin LI, Fengguang LUO, Zhihua YU, Weilin ZHOU, Liangjia ZONG

PDF(556 KB)
PDF(556 KB)
Front. Optoelectron. ›› 2010, Vol. 3 ›› Issue (4) : 347-353. DOI: 10.1007/s12200-010-0118-5
RESEARCH ARTICLE
RESEARCH ARTICLE

A novel architecture of optical code label generation and recognition for optical packet switching

Author information +
History +

Abstract

A novel architecture of optical code (OC) label generation and recognition for optical packet switching (OPS) by using super structured fiber Bragg grating (SSFBG) is proposed. The OC label is generated and recognized by a label generator and recognizer, respectively. The label generator is composed of N encoders in parallel, and it can generate 2N kinds of serial optical code labels (SOCLs) for indicating 2N network routing information. The label recognizer can decode SOCLs by N decoders in parallel and provides label information to the switching control unit so that clock information is not required during the decoding process. In the switch nodes, handling of the high-speed information payload stream and the recognition of the OC label are performed in the optical domain, while processing of the routing information remains in the electrical domain. This approach could be a promising solution for an OPS network with high capacity, good quality of service (QoS), multi-service function and high security. In this experiment, we demonstrate 40 Gbps 256 label optical packet switching that employs clockless SOCL processing.

Keywords

optical code (OC) label / serial optical code label (SOCL) / label switching / encoder/decoder / optical packet switching (OPS)

Cite this article

Download citation ▾
Bin LI, Fengguang LUO, Zhihua YU, Weilin ZHOU, Liangjia ZONG. A novel architecture of optical code label generation and recognition for optical packet switching. Front Optoelec Chin, 2010, 3(4): 347‒353 https://doi.org/10.1007/s12200-010-0118-5

References

[1]
Kitayama K, Wang X, Wada N. OCDMA over WDM PON-solution path to gigabit-symmetric FTTH. Journal of Lightwave Technology, 2006, 24(4): 1654–1662
CrossRef Google scholar
[2]
Yuang M, Chao I, Lo B, Tien P, Chen J, Wei C, Lin Y, Lee S S W, Chien C. HOPSMAN: an experimental testbed system for a 10-Gb/s optical packet-switched WDM metro ring network. IEEE Communications Magazine, 2008, 46(7): 158–166
CrossRef Google scholar
[3]
Yuang M C, Lee S S W, Tien P L, Lin Y M, Shih J, Tsai F, Chen A. Optical coarse packet-switched IP-over-WDM network OPSINET: technologies and experiments. IEEE Journal on Selected Areas in Communications, 2006, 24(8): 117–127
CrossRef Google scholar
[4]
Li H, Thng I L J. Cost-saving two-layer wavelength conversion in optical switching network. Journal of Lightwave Technology, 2006, 24(2): 705–712
CrossRef Google scholar
[5]
Liboiron-Ladouceur O, Small B A, Bergman K. Physical layer scalability of WDM optical packet interconnection networks. Journal of Lightwave Technology, 2006, 24(1): 262–270
CrossRef Google scholar
[6]
Tian C, Zhang Z, Ibsen M, Petropoulos P, Richardson D J. Demonstration of a 16-channel code-reconfigurable OCDMA/ DWDM system. In: Proceedings of OFC. 2007, OMO2
[7]
Parmigiani F, Oxenløwe L K, Galili M, Ibsen M, Zibar D, Petropoulos P, Richardson D J, Clausen A T, Jeppesen P. All-optical 160-Gbit/s retiming system using fiber grating based pulse shaping technology. Journal of Lightwave Technology, 2009, 27(9): 132–140
CrossRef Google scholar
[8]
Wang X, Matsushima K, Nishiki A, Wada N, Kitayama K. High reflectivity superstructured FBG for coherent optical code generation and recognition. Optics Express, 2004, 12(22): 5457–5468
CrossRef Google scholar
[9]
Chi N, Xu L, Christiansen L, Yvind K, Zhang J, Holm-Nielsen P, Peucheret C, Zhang C, Jeppesen P. Optical label swapping and packet transmission based on ASK/DPSK orthogonal modulation format in IP-over-WDM networks. In: Proceedings of OFC. 2003, 2: 792–794
[10]
Yu J, Chang G K, Chowdhury A. Instantaneous clock recovery for burst-mode optical label and payload by using a conventional data receiver. In: Proceedings of OFC. 2005, 3: OWK6
[11]
Cao J, Jeon M, Pan Z, Bansal Y, Wang Z, Zhu Z, Hernandez V, Taylor J, Akella V, Yoo S, Okamoto K, Kamei S. Error-free multi-hop cascaded operation of optical label switching routers with all-optical label swapping. In: Proceedings of OFC. 2003, 2: 791–792
[12]
Sasaki K, Sarashina M, Kobayashi S, Tamai H, Nishiki A, Ushikubo T. A new π/2-shift-BPSK signal by superstructure fibre Bragg grating en/decoder. In: Proceedings of ECOC. 2005, 3: 595–596
[13]
Sarashina M, Tamai H, Sasaki K, Kashima M. Demonstration of asynchronous ultrahigh speed optical label switching using SSFBGs label recognizer. In: Proceedings of OFC. 2006, JThB56
[14]
Parmigiani F, Oxenlowe L K, Galili M, Ibsen M, Zibar D, Petropoulos P, Richardson D J, Clausen A T, Jeppesen P. All-optical 160-Gbit/s RZ data retiming system incorporating a pulse shaping fibre Bragg grating. In: Proceedings of ECOC. 2007, 16–20
[15]
Parmigiani F, Petropoulos P, Ibsen M, Richardson D J. Pulse reshaping and retiming systems incorporating pulse shaping fiber Bragg grating. Journal of Lightwave Technology, 2006, 24(1): 357–364
CrossRef Google scholar
[16]
Wang X, Wada N, Miyazaki T, Cincotti G, Kitayama K. Field trial of 3-WDM×10-OCDMA×10.71-Gb/s asynchronous WDM/DPSK-OCDMA using hybrid E/D. Journal of Lightwave Technology, 2007, 25(1): 207–215
CrossRef Google scholar
[17]
Parmigiani F, Finot C, Mukasa K, Ibsen M, Roelens M A F, Petropoulos P, Richardson D J. Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating. Optics Express, 2006, 14(17): 7617–7622
CrossRef Google scholar
[18]
Wang X, Matsushima K, Kitayama K, Nishiki A, Wada N, Kubota F. High performance optical code generation and recognition by use of a 511-chip 640-Gchip/s phase-shifted superstructured fiber Bragg grating. Optics Letters, 2005, 30(4): 355–357
CrossRef Google scholar
[19]
Wang X, Matsushima K, Nishiki A, Wada N, Kitayama K. High reflectivity superstructured FBG for coherent optical code generation and recognition. Optics Express, 2004, 12(22): 5457–5468
CrossRef Google scholar
[20]
Wang X, Kataoka N, Wada N, Miyazaki T, Cincotti G, Kitayama K. Flexible 10 Gbps, 8-user DPSK-OCDMA system with 16×16 ports encoder and 16-level phase-shifted SSFBG decoders. In: Proceedings of OFC. 2008, OMR2
[21]
Wang X, Kitayama K. Analysis of beat noise in coherent and incoherent time-spreading OCDMA. Journal of Lightwave Technology, 2004, 22(10): 2226–2235
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 60677023), and the National High Technology Research and Development Program of China (No. 2006AA01Z240).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(556 KB)

Accesses

Citations

Detail

Sections
Recommended

/