Prospects and challenges of silicon/germanium
on-chip optoelectronics
Erich KASPER,
Author information+
Institute of Semiconductor
Engineering, University of Stuttgart, Stuttgart 70569, Germany;
Show less
History+
Published
05 Jun 2010
Issue Date
05 Jun 2010
Abstract
On-chip optoelectronics allows the integration of optoelectronic functions with microelectronics. Recent advances in silicon substrate fabrication (silicon-on-insulator (SOI)) and in heterostructure engineering (SiGe/Si) push this field to compact (chipsize) waveguide systems with high-speed response (50-GHz subsystems realized, potential with above 100 GHz). In this paper, the application and requirements, the future solutions, the components and the physical effects are discussed. A very high refractive index contrast of the waveguide Si-core/SiO2-cladding is responsible for the submicron line widths and strong bendings realized in chipsize waveguide lines and passive devices. The SiGe/Si heterostructure shifts the accessible wavelength into infrared up to telecommunication wavelengths 1.30–1.55 µm. Germanium, although also an indirect semiconductor as silicon, offers direct optical transitions which are only 140 meV above the dominant indirect one. This is the basic property for realizing high-speed devices for future above 10 GHz on-chip clocks and, eventually, a laser source monolithically integrated on the Si substrate.
Erich KASPER,.
Prospects and challenges of silicon/germanium
on-chip optoelectronics. Front. Optoelectron., 2010, 3(2): 143‒152 https://doi.org/10.1007/s12200-010-0007-y
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.