160-Gbit/s clock recovery using an electro-absorption modulator and 40-Gbit/s ETDM demultiplexer

Taorong GONG, Fengping YAN, Dan LU, Ming CHEN, Peng LIU, Peilin TAO, Muguang WANG, Tangjun LI, Shuisheng JIAN

PDF(189 KB)
PDF(189 KB)
Front. Optoelectron. ›› 2009, Vol. 2 ›› Issue (4) : 389-392. DOI: 10.1007/s12200-009-0072-2
RESEARCH ARTICLE

160-Gbit/s clock recovery using an electro-absorption modulator and 40-Gbit/s ETDM demultiplexer

Author information +
History +

Abstract

A 10-GHz clock recovery from a 16×10-Gbit/s optical time-division-multiplexed (OTDM) data stream is experimentally demonstrated using an electro-absorption modulator and 40-Gbit/s electric time-division-multiplexed (ETDM) demultiplexer. The recovered clock signal exhibits excellent stability, with root mean square (RMS) jitter of 328 and 345 fs corresponding to back-to-back and transmission over 100 km, respectively.

Keywords

optical time-division-multiplexed (OTDM) / clock recovery / 160-Gbit/s

Cite this article

Download citation ▾
Taorong GONG, Fengping YAN, Dan LU, Ming CHEN, Peng LIU, Peilin TAO, Muguang WANG, Tangjun LI, Shuisheng JIAN. 160-Gbit/s clock recovery using an electro-absorption modulator and 40-Gbit/s ETDM demultiplexer. Front Optoelec Chin, 2009, 2(4): 389‒392 https://doi.org/10.1007/s12200-009-0072-2

References

[1]
Tong D T K, Deng K-L, Mikkelsen B, Raybon G, Dreyer K F, Johnson J E. 160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop. Electronics Letters, 2000, 36(23): 1951-1952
CrossRef Google scholar
[2]
Boerner C, Schubert C, Schmidt C, Hilliger E, Marembert V, Berger J, Ferber S, Dietrich E, Ludwig R, Schmauss B, Weber H-G. 160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator. In: Proceedings of Optical Fiber Communication Conference (OFC). 2003, FF3
[3]
Hall K L, Moriarty D T, Hakimi H, Hakimi F, Robinson B S, Rauschenbach K A. An ultrafast variable optical delay technique. IEEE Photonics Technology Letters, 2000, 12(2): 208-210
CrossRef Google scholar
[4]
He J, Chan K T. Wavelength-switchable all optical clock recovery at 10 Gbit/s based on semiconductor fiber ring laser. Optics Express, 2005, 13(1): 327-335
CrossRef Google scholar
[5]
Salem R, Ahmadi A A, Tudury G E, Carter G M, Murphy T E. Two-photon absorption for optical clock recovery in OTDM networks. Journal of Lightwave Technology, 2006, 24(9): 3353-3362
CrossRef Google scholar
[6]
Zhang F. Research on the key technologies of 40 Gb/s long-haul transmission and all optical signal process. Dissertation for the Doctoral Degree. Beijing: Beijing Jiaotong University, 2008, 21-31
[7]
Morishita K, Takashina K. Polarization properties of fused fiber couplers and polarizing beam splitters. Journal of Lightwave Technology, 1991, 9(11): 1503-1507
CrossRef Google scholar
[8]
Zhao J, Cai L B, Li T J. Experimental demonstration on 4×10 Gbit/s optical time domain multiplexing signal. Photon Technology, 2005, 8(2): 18-21 (in Chinese)
[9]
Murai H, Kagawa M, Tsuji H, Fujii K. EA-modulator-based optical time division multiplexing/demultiplexing techniques for 160-Gb/s optical signal transmission. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 70-78
CrossRef Google scholar
[10]
Ohara T, Takara H, Shake I, Yamada T, Ishii M, Ogawa I, Okamoto M, Kawanishi S. Highly stable 160-Gb/s OTDM technologies based on integrated MUX/DEMUX and drift-free PLL-type clock recovery. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 40-48
CrossRef Google scholar
[11]
Born M, Wolf E. Principles of Optics. 7th ed. Cambridge: Cambridge University Press, 1999, 142-221
[12]
Anandarajah P M, Clarke A M, Guignard C, Bramerie L, Barry L P, Harvey J D, Simon J C. System-performance analysis of optimized gain-switched pulse source employed in 40- and 80-Gb/s OTDM systems. Journal of Lightwave Technology, 2007, 25(6): 1495-1502
CrossRef Google scholar

Acknowledgements

This work was supported by the Natural Science Foundation of Beijing (No. 4062027), the High Technology Research and Development Program of China (Nos. 2007AA01Z258, 2008AA01Z15), and the National Natural Science Foundation of China (Grant Nos. 60877042, 60837002).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(189 KB)

Accesses

Citations

Detail

Sections
Recommended

/