160-Gbit/s clock recovery using an electro-absorption modulator and 40-Gbit/s ETDM demultiplexer
Taorong GONG, Fengping YAN, Dan LU, Ming CHEN, Peng LIU, Peilin TAO, Muguang WANG, Tangjun LI, Shuisheng JIAN
160-Gbit/s clock recovery using an electro-absorption modulator and 40-Gbit/s ETDM demultiplexer
A 10-GHz clock recovery from a 16×10-Gbit/s optical time-division-multiplexed (OTDM) data stream is experimentally demonstrated using an electro-absorption modulator and 40-Gbit/s electric time-division-multiplexed (ETDM) demultiplexer. The recovered clock signal exhibits excellent stability, with root mean square (RMS) jitter of 328 and 345 fs corresponding to back-to-back and transmission over 100 km, respectively.
optical time-division-multiplexed (OTDM) / clock recovery / 160-Gbit/s
[1] |
Tong D T K, Deng K-L, Mikkelsen B, Raybon G, Dreyer K F, Johnson J E. 160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop. Electronics Letters, 2000, 36(23): 1951-1952
CrossRef
Google scholar
|
[2] |
Boerner C, Schubert C, Schmidt C, Hilliger E, Marembert V, Berger J, Ferber S, Dietrich E, Ludwig R, Schmauss B, Weber H-G. 160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator. In: Proceedings of Optical Fiber Communication Conference (OFC). 2003, FF3
|
[3] |
Hall K L, Moriarty D T, Hakimi H, Hakimi F, Robinson B S, Rauschenbach K A. An ultrafast variable optical delay technique. IEEE Photonics Technology Letters, 2000, 12(2): 208-210
CrossRef
Google scholar
|
[4] |
He J, Chan K T. Wavelength-switchable all optical clock recovery at 10 Gbit/s based on semiconductor fiber ring laser. Optics Express, 2005, 13(1): 327-335
CrossRef
Google scholar
|
[5] |
Salem R, Ahmadi A A, Tudury G E, Carter G M, Murphy T E. Two-photon absorption for optical clock recovery in OTDM networks. Journal of Lightwave Technology, 2006, 24(9): 3353-3362
CrossRef
Google scholar
|
[6] |
Zhang F. Research on the key technologies of 40 Gb/s long-haul transmission and all optical signal process. Dissertation for the Doctoral Degree. Beijing: Beijing Jiaotong University, 2008, 21-31
|
[7] |
Morishita K, Takashina K. Polarization properties of fused fiber couplers and polarizing beam splitters. Journal of Lightwave Technology, 1991, 9(11): 1503-1507
CrossRef
Google scholar
|
[8] |
Zhao J, Cai L B, Li T J. Experimental demonstration on 4×10 Gbit/s optical time domain multiplexing signal. Photon Technology, 2005, 8(2): 18-21 (in Chinese)
|
[9] |
Murai H, Kagawa M, Tsuji H, Fujii K. EA-modulator-based optical time division multiplexing/demultiplexing techniques for 160-Gb/s optical signal transmission. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 70-78
CrossRef
Google scholar
|
[10] |
Ohara T, Takara H, Shake I, Yamada T, Ishii M, Ogawa I, Okamoto M, Kawanishi S. Highly stable 160-Gb/s OTDM technologies based on integrated MUX/DEMUX and drift-free PLL-type clock recovery. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 40-48
CrossRef
Google scholar
|
[11] |
Born M, Wolf E. Principles of Optics. 7th ed. Cambridge: Cambridge University Press, 1999, 142-221
|
[12] |
Anandarajah P M, Clarke A M, Guignard C, Bramerie L, Barry L P, Harvey J D, Simon J C. System-performance analysis of optimized gain-switched pulse source employed in 40- and 80-Gb/s OTDM systems. Journal of Lightwave Technology, 2007, 25(6): 1495-1502
CrossRef
Google scholar
|
/
〈 | 〉 |