Targets detection and discrimination using laser polarimetric imaging
Xuguo ZHANG, Yuesong JIANG, Yiming ZHAO
Targets detection and discrimination using laser polarimetric imaging
Laser polarimetric imaging can offer additional information of targets compared with the traditional intensity imaging method. It can be used to detect camouflaged targets and distinguish targets with the same reflectivity, which cannot be realized using the traditional imaging method. Based on the dual-rotation retarder technique, we have established a setup to acquire different polarization state images. The polarization degree of the target can be calculated and encoded to get the polarization degree image. Preliminary results and error analysis have been given to validate the system. The results show that the system has rational arrangement and can realize the function of target detection and discrimination. Also, the polarization degree change and spectrum changes have little influence on the system.
laser polarimetric imaging / polarization degree / spectrum change
[1] |
Tyo J S, Goldstein D L, Chenault D B, Shaw J A. Review of passive imaging polarimetry for remote sensing applications. Applied Optics, 2006, 45(22): 5453-5469
CrossRef
Google scholar
|
[2] |
Sassen K. Polarization in lidar: a review. In: Shaw J A, Tyo J S, eds. Polarization Science and Remote Sensing. Proceedings of SPIE, Vol. 5158. SPIE, 2003, 151-160
|
[3] |
Chang P C Y, Walker J G, Hopcraft K I, Ablitt B, Jakeman E. Polarization discrimination for active imaging in scattering media. Optics Communications, 1999, 159(1-3): 1-6
CrossRef
Google scholar
|
[4] |
Chun C S L, Sadjadi F A. Target recognition study using polarimetric laser radar. In: Sadjadi F A, eds. Automatic Target Recognition XIV. Proceedings of SPIE, Vol. 5426. SPIE, 2004, 274-284
|
[5] |
Yao G. Differential optical polarization imaging in turbid media with different embedded objects. Optics Communications, 2004, 241(4-6): 255-261
CrossRef
Google scholar
|
[6] |
Jacques S L, Roman J R, Lee K. Imaging superficial tissues with polarized light. Lasers in Surgery and Medicine, 2000, 26(2): 119-129
CrossRef
Google scholar
|
[7] |
Yaroslavsky A N, Neel V, Anderson R R. Fluorescence polarization imaging for delineating nonmelanoma skin cancers. Optics Letters, 2004, 29(17): 2010-2012
CrossRef
Google scholar
|
[8] |
Wang M. Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing. Applied Optics, 2006, 45(35): 8951-8963
CrossRef
Google scholar
|
[9] |
Tan S X, Narayanan R M. Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing. Applied Optics, 2004, 43(11): 2360-2368
CrossRef
Google scholar
|
[10] |
Bock R D, Cathcart J M. Spectral polarization signature analysis and modeling in the infrared for the detection of landmines. In: Goldstein D H, Chenault D B, eds. Polarization: Measurement, Analysis, and Remote Sensing VI. Proceedings of SPIE, Vol. 5432. SPIE, 2004, 116-126
|
[11] |
Richmond R D, Evans B J. Polarimetric imaging laser radar (PILAR) program. In: Advanced Sensory Payloads for UAV Meeting Proceedings RTO-MP-SET-092. Neuilly-sur-Seine: RTO, 2005, 19–11–19–14
|
[12] |
Travis L. EOSP: Earth Observing Scanning Polarimeter. EOS Reference Handbook. Washington D.C.: NASA, 1995, 127-129
|
[13] |
Deuze J L, Breon F M, Devaux C, Goloub P, Herman M, Lafrance B, Maignan F, Marchand A, Nadal F, Perry G, Tanre D. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. Journal of Geophysical Research, 2001, 106(D5): 4913-4926
CrossRef
Google scholar
|
[14] |
Winker D, Vaughan M, Hunt B. The CALIPSO mission and initial results from CALIOP. In: Singh U N, Itabe T, Rao D N, eds. Lidar Remote Sensing for Environmental Monitoring VII. Proceedings of SPIE, Vol. 6409. SPIE, 2006, 640902
|
[15] |
Breugnot S, Clemenceau P. Modeling and performances of a polarization active imager at λ =806 nm. Optical Engineering, 2000, 39(10): 2681-2688
CrossRef
Google scholar
|
[16] |
Alouini M, Goudail F, Refregier P, Grisard A, Lallier E, Dolfi D. Multispectral polarimetric imaging with coherent illumination: towards higher image contrast. In: Goldstein D H, Chenault D B, eds. Polarization: Measurement, Analysis, and Remote Sensing VI. Proceedings of SPIE, Vol. 5432. SPIE, 2004, 133-144
|
[17] |
Hors L L, Hartemann P, Breugnot S. Multispectral polarization active imager in the visible band. In: Kamerman G W, Singh U N, Werner C, Molebny V V, eds. Laser Radar Technology and Applications V. Proceedings of SPIE, Vol. 4035. SPIE, 2000, 380-389
|
[18] |
Collett E. Polarized Light: Fundamentals and Applications. New York: Marcel Dekker, Inc., 1993
|
[19] |
Zhang X G, Jiang Y S, Lu X M, Shen L. Implementation and imaging of a modified laser polarimetric remote sensing system. In: Fang J C, Wang Z Y, eds. Seventh International Symposium on Instrumentation and Control Technology: Sensors and Instruments, Computer Simulation, and Artificial Intelligence. Proceedings of SPIE, Vol. 7127. SPIE, 2008, 712705
|
[20] |
Zhang X G, Jiang Y S, Lu X M. Adjustment of optical elements and error analysis for laser remote sensing polarization imaging system. Acta Optica Sinica, 2008, 28(6): 1191-1196 (in Chinese)
CrossRef
Google scholar
|
[21] |
Zhang X G, Jiang Y S, Zhao Y M. Application of polarimetric imaging in target detection. Opto-Electronic Engineering, 2008, 35(12): 59-62 (in Chinese)
|
[22] |
Lu X M, Jiang Y S, Rao W H. Polarization analysis of the Cassegrain telescope used for the lidar polarization active imaging system. Acta Optica Sinica, 2007, 27(10): 1771-1774 (in Chinese)
|
/
〈 | 〉 |