Simple technique to fabricate microscale and nanoscale silicon waveguide devices

Yao CHEN, Junbo FENG, Zhiping ZHOU, Christopher J. SUMMERS, David S. CITRIN, Jun YU

PDF(153 KB)
PDF(153 KB)
Front. Optoelectron. ›› 2009, Vol. 2 ›› Issue (3) : 308-311. DOI: 10.1007/s12200-009-0049-1
RESEARCH ARTICLE

Simple technique to fabricate microscale and nanoscale silicon waveguide devices

Author information +
History +

Abstract

Fabrication of microscale and nanoscale silicon waveguide devices requires patterning silicon, but until recently, exploitation of the technology has been restricted by the difficulty of forming ever-small features with minimum linewidth fluctuation. A technique was developed for fabricating such devices achieving vertical sidewall profile, smooth sidewall roughness of less than 10 nm, and fine features of 40 nm. Subsequently, silicon microring resonator and silicon-grating coupler were realized using this technique.

Keywords

nanofabrication / silicon waveguide / roughness / microring resonator / grating coupler

Cite this article

Download citation ▾
Yao CHEN, Junbo FENG, Zhiping ZHOU, Christopher J. SUMMERS, David S. CITRIN, Jun YU. Simple technique to fabricate microscale and nanoscale silicon waveguide devices. Front Optoelec Chin, 2009, 2(3): 308‒311 https://doi.org/10.1007/s12200-009-0049-1

References

[1]
Pavesi L, Guillot G. Optical Interconnects — The Silicon Approach. New York: Springer-Verlag, 2006
[2]
Zhou Z P, Gao D S, Wang Y, Chen J L, Feng J B, Xia Z X, Chen Y. Nano-optoelectronics research in WNLO. In: Proceedings of 2006 Optics Valley of China International Symposium on Optoelectronics. Wuhan: IEEE, 2006: 8-11
[3]
Wahlbrink T, Mollenhauer T, Georgiev Y M, Henschel W, Efavi J K, Gottlob H D B, Lemme M C, Kurz H, Niehusmann J, Bolivar P H. Highly selective etch process for silicon-on-insulator nano-devices. Microelectronic Engineering, 2005, 78–79(special issue): 212-217
CrossRef Google scholar
[4]
Welch C C, Goodyear A L, Wahlbrink T, Lemme M C, Mollenhauer T. Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas. Microelectronic Engineering, 2006, 83(4–9): 1170-1173
[5]
Peyrade D, Chen Y, Talneau A, Patrini M, Galli M, Marabelli F, Agio M, Andreani L C, Silberstein E, Lalanne P. Fabrication and optical measurements of silicon on insulator photonic nanostructures. Microelectronic Engineering, 2002, 61–62: 529-536
CrossRef Google scholar
[6]
Absil P P, Hryniewicz J V, Little B E, Wilson R A, Joneckis L G, Ho P T. Compact microring notch filters. IEEE Photonics Technology Letters, 2000, 12(4): 398-400
CrossRef Google scholar
[7]
Little B E, Chu S T, Haus H A, Foresi J, Laine J P. Microring resonator channel dropping filters. Journal of Lightwave Technology, 1997, 15(6): 998-1005
CrossRef Google scholar
[8]
Almeida V R, Barrios C A, Panepucci R R, Lipson M. All-optical control of light on a silicon chip. Nature, 2004, 431(7012): 1081-1084
CrossRef Google scholar
[9]
Xu Q F, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435(7040): 325-327
CrossRef Google scholar
[10]
Absil P P, Hryniewicz J V, Little B E, Cho P S, Wilson R A, Joneckis L G, Ho P T. Wavelength conversion in GaAs micro-ring resonators. Optics Letters, 2000, 25(8): 554-556
CrossRef Google scholar
[11]
Bourdon G, Alibert G, Bequin A, Bellman B, Guiot E. Ultralow loss ring resonators using 3.5% index-contrast Ge-doped silica waveguides. IEEE Photonics Technology Letters, 2003, 15(5): 709-711
CrossRef Google scholar
[12]
Rabiei P, Steier W H, Zhang C, Dalton L R. Polymer micro-ring filters and modulators. Journal of Lightwave Technology, 2002, 20(11): 1968-1975
CrossRef Google scholar
[13]
Chen W Y, Grover R, Ibrahim T A, Van V, Ho P T. Compact single-mode benzocyclobutene microracetrack resonators. In: Proceedings of Integrated Photonics Research. Washington, D.C.: Optical Society of America, 2003, ITuG2
[14]
Kiyat I, Kocabas C, Aydinli A. Integrated micro ring resonator displacement sensor for scanning probe microscopies. Journal of Micromechanics and Microengineering, 2004, 14(3): 374-381
CrossRef Google scholar
[15]
De Vos K, Bartolozzi I, Schacht E, Bienstman P, Baets R. Silicon-on-insulator microring resonator for sensitive and label-free biosensing. Optics Express, 2007, 15(12): 7610-7615
CrossRef Google scholar
[16]
Krioukov E, Klunder D J W, Driessen A, Greve J, Otto C. Sensor based on an integrated optical microcavity. Optics Letters, 2002, 27(7): 512-514
CrossRef Google scholar
[17]
Ksendzov A, Lin Y. Integrated optics ring-resonator sensors for protein detection. Optics Letters, 2005, 30(24): 3344-3346
CrossRef Google scholar
[18]
Guo J P, Shaw M J, Vawter G A, Hadley G R, Esherick P, Sullivan C T. High-Q microring resonator for biochemical sensors. Proceedings of SPIE, 2005, 5728: 83-92
CrossRef Google scholar
[19]
Yalçin A, Popat K C, Aldridge J C, Desai T A, Hryniewicz J, Chbouki N, Little B E, Oliver K, Van V, Chu S, Gill D, Anthes-Washburn M, Unlu M S, Goldberg B B. Optical sensing of biomolecules using microring resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 148-155
CrossRef Google scholar
[20]
Feng J B, Zhou Z P. High efficiency compact grating coupler for integrated optical circuits. Proceedings of SPIE, 2006, 6351: 63511H
CrossRef Google scholar
[21]
Flamm D L. Mechanisms of silicon etching in fluorine-and-chlorine-containing plasmas. Pure and Applied Chemistry, 1990, 62(9): 1709-1720
CrossRef Google scholar

Acknowledgements

This work was supported in part by the French National Center for Scientific Research (CNRS).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(153 KB)

Accesses

Citations

Detail

Sections
Recommended

/