High-power fiber laser combination technology

Xi CHEN, Wei LI, Chao YANG, Ning YANG

PDF(191 KB)
PDF(191 KB)
Front. Optoelectron. ›› 2009, Vol. 2 ›› Issue (3) : 264-268. DOI: 10.1007/s12200-009-0035-7
RESEARCH ARTICLE
RESEARCH ARTICLE

High-power fiber laser combination technology

Author information +
History +

Abstract

Research on fiber laser combination is discussed briefly in this paper. High-power double clad-fiber laser beam combination technology is introduced and different kinds of fiber laser beam combination and coherent combination technologies are evaluated. Tapered fused bundle (TFB) couplers are used in laser combine for higher power. In this paper, the theory and progress in TFB coupling are introduced. The experiment on our self-fabricated TFB is presented. The efficiency of the fiber coupler exceeded 70% and increased as the input power went up. A maximum total output power of 689 W was obtained, with an efficiency of 74%. The fiber coupler displayed stability during the course of the experiment, without any cooling provided.

Keywords

fiber laser / combination technology / fiber coupler / tapered fused bundle (TFB) / fabrication

Cite this article

Download citation ▾
Xi CHEN, Wei LI, Chao YANG, Ning YANG. High-power fiber laser combination technology. Front Optoelec Chin, 2009, 2(3): 264‒268 https://doi.org/10.1007/s12200-009-0035-7

References

[1]
Fan T Y, Sanchez A. Coherent (phased array) and wavelength (spectral) beam combining compared. Proceedings of SPIE, 2005, 5709: 157-164
CrossRef Google scholar
[2]
Loftus T H, Liu A, Hoffman P R, Thomas A, Norsen M, Hamilton C E, Honea E. 258 W of spectrally beam combined power with near-diffraction limited beam quality. Proceedings of SPIE, 2006, 6102: 61020S
CrossRef Google scholar
[3]
Sevian A, Andrusyak O, Ciapurin I, Venus G, Glebov L. Spectral beam combining with volume Bragg gratings: cross-talk analysis and optimization schemes. Proceedings of SPIE, 2006, 6216: 62160V
CrossRef Google scholar
[4]
Ciapurin I V, Glebov L B, Glebova L N, Smirnov V I, Rotari E V. Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating. Proceedings of SPIE, 2003, 4974: 209-219
CrossRef Google scholar
[5]
Boullet J, Sabourdy D, Desfarges-Berthelemot A, Kermène V, Pagnoux D, Roy P, Dussardier B, Blanc W. Coherent combining in an Yb-doped double-core fiber laser. Optics Letters, 2005, 30(15): 1962-1964
CrossRef Google scholar
[6]
Kozlov V A, Hernández-Cordero J, Morse T F. All-fiber coherent beam combining of fiber lasers. Optics Letters, 1999, 24(24): 1814-1816
CrossRef Google scholar
[7]
Shirakawa A, Sekiguchi T, Ueda K. Scalable coherent beam combining of fiber lasers. In: Proceedings of Conference on Lasers and Electro-Optics. 2003, CWO1
[8]
He B, Lou Q H, Zhou J, Dong J X, Wei Y R, Xue D, Qi Y F, Su Z P, Li L B, Zhang F P. High power coherent beam combination from two fiber lasers. Optics Express, 2006, 14(7): 2721-2726
CrossRef Google scholar
[9]
Shirakawa A, Saitou T, Sekiguchi T, Ueda K. Coherent addition of fiber lasers by use of a fiber coupler. Optics Express, 2002, 10(21): 1167-1172
[10]
Zhou Y, Liu L P, Etson C, Abranyos Y, Padilla A, Chen Y C. Phase locking of a two-dimensional laser array by controlling the far-field pattern. Applied Physics Letters, 2004, 84(16): 3025-3027
CrossRef Google scholar
[11]
Bruesselbach H, Minden M, Rogers J L, Jones D C, Mangir M S. 200 W self-organized coherent fiber arrays. In: Proceedings of Conference on Lasers and Electro-Optics. 2005, 1: 532-534
[12]
Wetter A, Faucher M, Lovelady M, Séguin F. Tapered fused-bundle splitter capable of 1 kW CW operation. Proceedings of SPIE, 2007, 6453: 64530I
CrossRef Google scholar
[13]
Séguin F, Wetter A, Martineau L, Faucher M, Delisle C, Caplette S. Tapered fused bundle coupler package for reliable high optical power dissipation. Proceedings of SPIE, 2006, 6102: 61021N
CrossRef Google scholar
[14]
Goloborodko V, Keren S, Rosenthal A, Levit B, Horowitz M. Measuring temperature profiles in high power optical fiber components. Applied Optics, 2003, 42(13): 2284-2288
CrossRef Google scholar
[15]
Evgeny M D, Igor A B, Artem A F. Destruction of silica fiber cladding by fiber fuse effect. In: Proceedings of Optical Fiber Communication Conference. 2004, TuB4
[16]
Martan T, Honzátko P, Kaňka J, Noyotný K. Workplace for manufacturing devices based on optical fiber tapers. Proceedings of SPIE, 2007, 6609: 66090K
CrossRef Google scholar
[17]
Cronin A, McAtamney C, Sherlock R, O'Connor G M, Glynn T J. Laser-based workstation for the manufacture of fused biconical tapered coupler devices. Proceedings of SPIE, 2005, 5827: 505-514
CrossRef Google scholar
[18]
Bayle F, Meunier J P. Efficient fabrication of fused-fiber biconical taper structures by a scanned CO2 laser beam technique. Applied Optics, 2005, 44(30): 6402-6411
CrossRef Google scholar
[19]
Kakarantzas G, Dimmick T E, Birks T A, Le Roux R, Russell P St J. Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers. Optics Letters, 2001, 26(15): 1137-1139
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(191 KB)

Accesses

Citations

Detail

Sections
Recommended

/