Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods

Ming WEI, Jun QIAN, Qiuqiang ZHAN, Fuhong CAI, Arash GHARIBI, Sailing HE

PDF(199 KB)
PDF(199 KB)
Front. Optoelectron. ›› 2009, Vol. 2 ›› Issue (2) : 141-145. DOI: 10.1007/s12200-009-0012-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods

Author information +
History +

Abstract

Plasmon-resonant gold nanorods (GNRs) are demonstrated as strong absorption contrast agents for optical coherence tomography (OCT). OCT imaging of tissue phantoms doped with GNRs of different resonant wavelengths and concentrations is studied. To utilize the high absorption property of GNRs, a differential absorption OCT imaging is introduced to retrieve the absorption information of GNRs from conventional backscattered signals. It is shown that the contrast of the OCT image can be enhanced significantly when the plasmon resonant wavelength of the GNRs matches the central wavelength of the OCT source.

Keywords

optical coherence tomography (OCT) / plasmon resonance / gold nanorod (GNR) / differential absorption

Cite this article

Download citation ▾
Ming WEI, Jun QIAN, Qiuqiang ZHAN, Fuhong CAI, Arash GHARIBI, Sailing HE. Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods. Front Optoelec Chin, 2009, 2(2): 141‒145 https://doi.org/10.1007/s12200-009-0012-1

References

[1]
Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G. Optical coherence tomography. Science, 1991, 254(5035): 1178-1181
CrossRef Google scholar
[2]
Barton J K, Hoying J B, Sullivan C J. Use of microbubbles as an optical coherence tomography contrast agent. Academic Radiology, 2002, 9(1): S52-S55
CrossRef Google scholar
[3]
Lee T M, Oldenburg A L, Sitafalwalla S, Marks D L, Luo W, Toublan F J J, Suslick K S, Boppart S A. Engineered microsphere contrast agents for optical coherence tomography. Optics Letters, 2003, 28(17): 1546-1548
CrossRef Google scholar
[4]
Boppart S A, Oldenburg A L, Xu C, Marks D L. Optical probes and techniques for molecular contrast enhancement in coherence imaging. Journal of Biomedical Optics, 2005, 10(4): 041208
CrossRef Google scholar
[5]
Murphy C J, Gole A M, Stone J W, Sisco P N, Alkilany A M, Goldsmith E C, Baxter S C. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Accounts of Chemical Research, 2008, 41(12): 1721-1730
CrossRef Google scholar
[6]
Connor E E, Mwamuka J, Gole A, Murphy C J, Wyatt M D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1(3): 325-327
CrossRef Google scholar
[7]
Sonnichsen C, Franzl T, Wilk T, Von Plessen G, Feldmann J, Wilson O, Mulvaney P. Drastic reduction of plasmon damping in gold nanorods. Physical Review Letters, 2002, 88(7): 077402
CrossRef Google scholar
[8]
Zagaynova E V, Shirmanova M V, Kirillin M Y , Khlebtsov B N, Orlova A G, Balalaeva I V, Sirotkina M A, Bugrova M L, Agrba P D, Kamensky V A. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Physics in Medicine and Biology, 2008, 53(18) 4995-5009
CrossRef Google scholar
[9]
Cang H, Sun T, Li Z Y, Chen J, Wiley B J, Xia Y, Li X. Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Optics Letters, 2005, 30(22): 3048-3050
CrossRef Google scholar
[10]
Oldenburg A L, Hansen M N, Zweifel D A, Wei A, Boppart S A. Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Optics Express, 2006, 14(15): 6724-6738
CrossRef Google scholar
[11]
Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. Journal of Physical Chemistry B, 2001, 105(19): 4065-4067
CrossRef Google scholar
[12]
Huang X, El-Sayed I H, Qian W, El-Sayed M A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society, 2006, 128(6): 2115-2120
CrossRef Google scholar
[13]
Troutman T S, Barton J K, Romanowski M. Optical coherence tomography with plasmon resonant nanorods of gold. Optics Letters, 2007, 32(11): 1438-1440
CrossRef Google scholar
[14]
Adler D C, Huang S, Huber R, Fujimoto J G. Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Optics Express, 2008, 16(7): 4376-4393
CrossRef Google scholar
[15]
Skala M C, Crow M J, Wax A, Izatt J A. Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres. Nano Letters, 2008, 8(10): 3461-3467
CrossRef Google scholar
[16]
Jain P K, Lee K S, El-Sayed I H, El-Sayed M A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. Journal of Physical Chemistry B, 2006, 110(14): 7238-7248
CrossRef Google scholar
[17]
Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761): 622-627
CrossRef Google scholar
[18]
Prescott S W, Mulvaneya P. Gold nanorod extinction spectra. Journal of Applied Physics, 2006, 99(12): 123504
CrossRef Google scholar
[19]
Babak N, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry Materials, 2003, 15(10): 1957-1962
CrossRef Google scholar
[20]
Swartling J, Dam J S, Andersson-Engels S. Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties. Applied Optics, 2003, 42(22): 4612-4621
CrossRef Google scholar
[21]
Zaccanti G, Bianco S D, Marelli F. Measurements of optical properties of high-density media. Applied Optics, 2003, 42(19): 4023-4030
CrossRef Google scholar
[22]
Van Leeuwen T G, Faber D J, Aalders M C. Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(2): 227-234
CrossRef Google scholar
[23]
Schmitt J M, Knuttel A, Bonner R F. Measurement of optical properties of biological tissues by low coherence reflectometry. Applied Optics, 1993, 32(30): 6032-6042
CrossRef Google scholar
[24]
Schmitt J M, Xiang S H, Yung K M. Differential absorption imaging with optical coherence tomography. Journal of the Optical Society of American A, 1998, 15(9): 2288-2296
CrossRef Google scholar

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 60688401) and partially supported by a multidisciplinary project of Zhejiang University and the Swedish Foundation for Strategic Research (SSF).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(199 KB)

Accesses

Citations

Detail

Sections
Recommended

/