Overcoming ill-posedness of diffuse optical tomography in steady-state domain

QUAN Guotao, BI Kun, ZENG Shaoqun, LUO Qingming

PDF(294 KB)
PDF(294 KB)
Front. Optoelectron. ›› 2008, Vol. 1 ›› Issue (1-2) : 44-49. DOI: 10.1007/s12200-008-0055-8

Overcoming ill-posedness of diffuse optical tomography in steady-state domain

  • QUAN Guotao, BI Kun, ZENG Shaoqun, LUO Qingming
Author information +
History +

Abstract

In recent decades, diffuse optical tomography (DOT) has drawn more and more interest in molecular imaging because of its advantage of large penetration depth in optical image technology. However, ill-posedness problems have dramatically limited this application technique. In this paper, a new method to remove the ill-posedness of DOT is introduced. With a rotating steady-state domain experiment system, by increasing experimental data that could be obtained from any visual angle, four contrast experiments were simulated. It was proved that when the sum of the experiment data is larger than that of the unknown optical coefficient of phantom, ill-posedness would be reduced and the quality of the reconstructed image could be improved.

Cite this article

Download citation ▾
QUAN Guotao, BI Kun, ZENG Shaoqun, LUO Qingming. Overcoming ill-posedness of diffuse optical tomography in steady-state domain. Front. Optoelectron., 2008, 1(1-2): 44‒49 https://doi.org/10.1007/s12200-008-0055-8

References

1. Wells K, Hebden J C, Schmidt F E W, et al.. The UCL multichannel time-resolved system foroptical tomography. In: Chance B, Alfano R R, eds. Optical Tomographyand Spectroscopy of Tissue: Theory, Instrumentation, Model, and HumanStudies II. San Jose: SPIE, 1997, 2979599–607
2. van Houten J P, Benaron D A, Spilman S, et al.. Imaging brain injury using time-resolved nearinfrared light scanning. Pediatric Research, 1996, 39(3): 470–476. doi:10.1203/00006450-199603000-00015
3. Miwa M, Ueda Y . Development of time-resolvedspectroscopy system for quantitative noninvasive tissue measurement. In: Chance B, AlfanoR R, eds. Optical Tomography, Photon Migration, andSpectroscopy of Tissue and Model Media: Theory, Human Studies, andInstrumentation. San Jose: SPIE, 1995, 2389: 142–149
4. Ntziachristos V, Ripoll J, Wang L H, et al.. Looking and listening to light: the evolutionof whole-body photonic imaging. NatureBiotechnology, 2005, 23(3): 313–320. doi:10.1038/nbt1074
5. Franceschini M A, Moesta K T, Fantini S, et al.. Frequency-domain techniques enhance opticalmammography: initial clinical results. Proceedings of the National Academy of Sciences of the United Statesof America, 1997, 94(12): 6468–6473. doi:10.1073/pnas.94.12.6468
6. Hielscher A H, Bartel S . Overcoming ill-posednessin optical tomography. In: Hanson K M, ed. Medical Imaging 2000: Image Processing. SanDiego: SPIE, 2000, 3979: 575–585
7. Abdoulaev G S, Hielscher A H . Three-dimensional opticaltomography with the equation of radiative transfer. Jounal of Electronic Imaging, 2003, 12(4): 594–601. doi:10.1117/1.1587730
8. Wright S, Schweiger M, Arridge S R . Solutions to the transport equation using variable orderangular basis. In: Kai Licha, Rinaldo Cubeddu, eds. Photon Migrationand Diffuse-Light Imaging II. Munich: SPIE, 2005, 5859: 585914.1–585914.8
9. Ren K, Abdoulaev G S, Bal G, et al.. Algorithm for solving the equation of radiativetransfer in the frequency domain. OpticsLetters, 2004, 29(6): 578–580. doi:10.1364/OL.29.000578
10. Tarvainen T, Vauhkonen M, Kolehmainen V, et al.. Finite element model for the coupled radiativetransfer equation and diffusion approximation. International Journal for Numerical Methods in Engineering, 2006, 65(3): 383–405. doi:10.1002/nme.1451
11. Arridge S R . Optical tomography in medical imaging. Inverse Problems, 1999, 15(2): 41–93. doi:10.1088/0266-5611/15/2/022
12. Schweiger M, Arridge S R, Hiraoka M, et al.. The finite element method for the propagationof light in scattering media:Boundary and source conditions. Medical Physics, 1995, 22(11): 1779–1792. doi:10.1118/1.597634
13. Cong A X, Wang G . A finite-element-based reconstructionmethod for 3D fluorescence tomography. Optics Express, 2005, 13(24): 9847–9857. doi:10.1364/OPEX.13.009847
14. Lee J H, Kim S, Kim Y T . Finite element method for diffusive light propagationsin index-mismatched media. Optics Express, 2004, 12(8): 1727–1740. doi:10.1364/OPEX.12.001727
15. Arridge S R, Schweiger M . Photon-measurement densityfunctions part 2: finite-element-method calculations. Applied Optics, 1995, 34(34): 8026–8037
16. Roy R, Sevick-Muraca E M . Truncated Newton's optimizationscheme for absorption and fluorescence optical tomography: part Itheory and formulation. Optics Express, 1999, 4(10): 353–371
17. Roy R, Sevick-Muraca E M . Truncated Newton's optimizationscheme for absorption and fluorescence optical tomography: part IIreconstruction from synthetic measurements. Optics Express, 1999, 4(10): 372–382
18. Ntziachristos V, Weissleder R . Charge-coupled-device basedscanner for tomography of fluorescent near-infrared probes in turbidmedia. Medical Physics, 2002, 29(5): 803–809. doi:10.1118/1.1470209
19. Mahmood U, Tung C, Bogdanov A, et al.. Near-infrared optical imaging system to detecttumor protease activity. Radiology, 1999, 213(3): 866–870
20. Benaron D A, Hintz S R, Villringer A, et al.. Noninvasive functional imaging of human brainusing light. Journal of Cerebral BloodFlow & Metabolism, 2000, 20(3): 469–477
21. Firbank M, Oda M, Delpy D T . An improved design for a stable and reproducible phantommaterial for use in near-infrared spectroscopy and imaging. Physics in Medicine and Biology, 1995, 40(5): 955–961. doi:10.1088/0031-9155/40/5/016
AI Summary AI Mindmap
PDF(294 KB)

Accesses

Citations

Detail

Sections
Recommended

/