PDF(294 KB)
Overcoming ill-posedness of diffuse optical tomography
in steady-state domain
- QUAN Guotao, BI Kun, ZENG Shaoqun, LUO Qingming
Author information
+
The Key Laboratory of Biomedical Photonics of Ministry of Education, Huazhong University of Science and Technology
Show less
History
+
Published |
05 Jun 2008 |
Issue Date |
05 Jun 2008 |
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Wells K, Hebden J C, Schmidt F E W, et al.. The UCL multichannel time-resolved system foroptical tomography. In: Chance B, Alfano R R, eds. Optical Tomographyand Spectroscopy of Tissue: Theory, Instrumentation, Model, and HumanStudies II. San Jose: SPIE, 1997, 2979599–607
2. van Houten J P, Benaron D A, Spilman S, et al.. Imaging brain injury using time-resolved nearinfrared light scanning. Pediatric Research, 1996, 39(3): 470–476. doi:10.1203/00006450-199603000-00015
3. Miwa M, Ueda Y . Development of time-resolvedspectroscopy system for quantitative noninvasive tissue measurement. In: Chance B, AlfanoR R, eds. Optical Tomography, Photon Migration, andSpectroscopy of Tissue and Model Media: Theory, Human Studies, andInstrumentation. San Jose: SPIE, 1995, 2389: 142–149
4. Ntziachristos V, Ripoll J, Wang L H, et al.. Looking and listening to light: the evolutionof whole-body photonic imaging. NatureBiotechnology, 2005, 23(3): 313–320. doi:10.1038/nbt1074
5. Franceschini M A, Moesta K T, Fantini S, et al.. Frequency-domain techniques enhance opticalmammography: initial clinical results. Proceedings of the National Academy of Sciences of the United Statesof America, 1997, 94(12): 6468–6473. doi:10.1073/pnas.94.12.6468
6. Hielscher A H, Bartel S . Overcoming ill-posednessin optical tomography. In: Hanson K M, ed. Medical Imaging 2000: Image Processing. SanDiego: SPIE, 2000, 3979: 575–585
7. Abdoulaev G S, Hielscher A H . Three-dimensional opticaltomography with the equation of radiative transfer. Jounal of Electronic Imaging, 2003, 12(4): 594–601. doi:10.1117/1.1587730
8. Wright S, Schweiger M, Arridge S R . Solutions to the transport equation using variable orderangular basis. In: Kai Licha, Rinaldo Cubeddu, eds. Photon Migrationand Diffuse-Light Imaging II. Munich: SPIE, 2005, 5859: 585914.1–585914.8
9. Ren K, Abdoulaev G S, Bal G, et al.. Algorithm for solving the equation of radiativetransfer in the frequency domain. OpticsLetters, 2004, 29(6): 578–580. doi:10.1364/OL.29.000578
10. Tarvainen T, Vauhkonen M, Kolehmainen V, et al.. Finite element model for the coupled radiativetransfer equation and diffusion approximation. International Journal for Numerical Methods in Engineering, 2006, 65(3): 383–405. doi:10.1002/nme.1451
11. Arridge S R . Optical tomography in medical imaging. Inverse Problems, 1999, 15(2): 41–93. doi:10.1088/0266-5611/15/2/022
12. Schweiger M, Arridge S R, Hiraoka M, et al.. The finite element method for the propagationof light in scattering media:Boundary and source conditions. Medical Physics, 1995, 22(11): 1779–1792. doi:10.1118/1.597634
13. Cong A X, Wang G . A finite-element-based reconstructionmethod for 3D fluorescence tomography. Optics Express, 2005, 13(24): 9847–9857. doi:10.1364/OPEX.13.009847
14. Lee J H, Kim S, Kim Y T . Finite element method for diffusive light propagationsin index-mismatched media. Optics Express, 2004, 12(8): 1727–1740. doi:10.1364/OPEX.12.001727
15. Arridge S R, Schweiger M . Photon-measurement densityfunctions part 2: finite-element-method calculations. Applied Optics, 1995, 34(34): 8026–8037
16. Roy R, Sevick-Muraca E M . Truncated Newton's optimizationscheme for absorption and fluorescence optical tomography: part Itheory and formulation. Optics Express, 1999, 4(10): 353–371
17. Roy R, Sevick-Muraca E M . Truncated Newton's optimizationscheme for absorption and fluorescence optical tomography: part IIreconstruction from synthetic measurements. Optics Express, 1999, 4(10): 372–382
18. Ntziachristos V, Weissleder R . Charge-coupled-device basedscanner for tomography of fluorescent near-infrared probes in turbidmedia. Medical Physics, 2002, 29(5): 803–809. doi:10.1118/1.1470209
19. Mahmood U, Tung C, Bogdanov A, et al.. Near-infrared optical imaging system to detecttumor protease activity. Radiology, 1999, 213(3): 866–870
20. Benaron D A, Hintz S R, Villringer A, et al.. Noninvasive functional imaging of human brainusing light. Journal of Cerebral BloodFlow & Metabolism, 2000, 20(3): 469–477
21. Firbank M, Oda M, Delpy D T . An improved design for a stable and reproducible phantommaterial for use in near-infrared spectroscopy and imaging. Physics in Medicine and Biology, 1995, 40(5): 955–961. doi:10.1088/0031-9155/40/5/016