Guided properties and applications of photonic bandgap fibers

WANG Zhi, LIU Yange, KAI Guiyun, LIU Bo, ZHANG Chunshu, JIN Long, FANG Qiang, YUAN Shuzhong, DONG Xiaoyi

PDF(513 KB)
PDF(513 KB)
Front. Optoelectron. ›› 2008, Vol. 1 ›› Issue (1-2) : 25-32. DOI: 10.1007/s12200-008-0040-2

Guided properties and applications of photonic bandgap fibers

  • WANG Zhi, LIU Yange, KAI Guiyun, LIU Bo, ZHANG Chunshu, JIN Long, FANG Qiang, YUAN Shuzhong, DONG Xiaoyi
Author information +
History +

Abstract

The authors have reviewed some of their recent studies on photonic bandgap fibers (PBGFs). PBGFs that confine light in the core by the photonic bandgap effect of cladding have potential applications in various photonic devices. In this paper, the guided properties and tuned mechanics of anti-resonant PBGFs are theoretically illustrated. The special coupling properties in multi-core PBGFs, such as decoupling and resonant coupling effect, are then introduced. Finally, fiber Bragg grating inscribed in all-solid PBGFs is theoretically and experimentally studied, and special resonant characteristics are also observed.

Cite this article

Download citation ▾
WANG Zhi, LIU Yange, KAI Guiyun, LIU Bo, ZHANG Chunshu, JIN Long, FANG Qiang, YUAN Shuzhong, DONG Xiaoyi. Guided properties and applications of photonic bandgap fibers. Front. Optoelectron., 2008, 1(1-2): 25‒32 https://doi.org/10.1007/s12200-008-0040-2

References

1. Birks T A, Knight J C, Russell P S J . Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961–963. doi:10.1364/OL.22.000961
2. Knight J C, Arriaga J, Birks T A, et al.. Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technology Letters, 2000, 12(7): 807–809. doi:10.1109/68.853507
3. Broderick N G R, Monro T M, Bennett P J, et al.. Nonlinearity in holey optical fibers: measurementand future opportunities. Optics Letters, 1999, 24(20): 1395–1397. doi:10.1364/OL.24.001395
4. Knight J C . Photonic crystal fibres. Nature, 2003, 424(6950): 847–851. doi:10.1038/nature01940
5. Cregan R F, Mangan B J, Knight J C, et al.. Single-mode photonic band gap guidance of lightin air. Science, 1999, 285(5433): 1537–1539. doi:10.1126/science.285.5433.1537
6. Couny F, Benabid F, Light P S . Large-pitch kagome-structured hollow-core photonic crystalfiber. Optics Letters, 2006, 31(24): 3574–3576. doi:10.1364/OL.31.003574
7. Benabid F, Knight J C, Antonopoulos G, et al.. Stimulated Raman scattering in hydrogen-filledhollow-core photonic crystal fiber. Science, 2002, 298(5592): 399–402. doi:10.1126/science.1076408
8. Ouzounov D G, Ahmad F R, Müller D, et al.. Generation of megawatt optical solitons in hollow-corephotonic band-gap fibers. Science, 2003, 301(5640): 1702–1704. doi:10.1126/science.1088387
9. Limpert J, Schreiber T, Nolte S, et al.. All fiber chirped-pulse amplification systembased on compression in air-guiding photonic bandgap fiber. Optics Express, 2003, 11(24): 3332–3337
10. Litchinitser N M, Abeeluck A K, Headley C, et al.. Antiresonant reflecting photonic crystal opticalwaveguides. Optics Letters, 2002, 27(18): 1592–1594. doi:10.1364/OL.27.001592
11. Litchinitser N M, Dunn S C, Steinvurzel P E, et al.. Application of an ARROW model for designingtunable photonic devices. Optics Express, 2004, 12(8): 1540–1550. doi:10.1364/OPEX.12.001540
12. Argyros A, Birks T A, Leon-Saval S G, et al.. Guidance properties of low-contrast photonicbandgap fibres. Optics Express, 2005, 13(7): 2503–2511. doi:10.1364/OPEX.13.002503
13. Zhang C S, Kai G Y, Wang Z, et al.. Transformation of a transmission mechanism byfilling the holes of normal silica-guiding microstructure fibers withnematic liquid crystal. Optics Letters, 2005, 30(18): 2372–2374. doi:10.1364/OL.30.002372
14. Wang Z, Kai G Y, Liu Y G, et al.. Coupling and decoupling of dual-core photonicbandgap fibers. Optics Letters, 2005, 30(19): 2542–2544. doi:10.1364/OL.30.002542
15. Zhang C S, Kai G Y, Wang Z, et al.. Tunable highly birefringent photonic bandgapfibers. Optics Letters, 2005, 30(20): 2703–2705. doi:10.1364/OL.30.002703
16. Zhang C S, Kai G Y, Wang Z, et al.. Simulations of effect of high-index materialson highly birefringent photonic crystal fibres. Chinese Physics Letters, 2005, 22(11): 2858–2861. doi:10.1088/0256-307X/22/11/037
17. Zhang C S, Kai G Y, Wang Z, et al.. Design of tunable bandgap guidance in high-indexfilled microstructure fibers. Journal ofthe Optical Society of America B–Optical Physics, 2006, 23(4): 782–786. doi:10.1364/JOSAB.23.000782
18. Wang Z, Taru T, Birks T A, et al.. Coupling in dual-core photonic bandgap fibers:theory and experiment. Optics Express, 2007, 15(8): 4795–4803. doi:10.1364/OE.15.004795
19. Wang Z, Liu Y G, Kai G Y, et al.. Directional couplers operated by resonant couplingin all-solid photonic bandgap fibers. OpticsExpress, 2007, 15(14): 8925–8930. doi:10.1364/OE.15.008925
20. Fang Q, Wang Z, Kai G Y, et al.. Proposal for all-solid photonic bandgap fiberwith improved dispersion characteristics. IEEE Photonics Technology Letters, 2007, 19(16): 1239–1241. doi:10.1109/LPT.2007.902233
21. Jin L, Wang Z, Fang Q, et al.. Bragg grating resonances in all-solid bandgapfibers. Optics Letters, 2007, 32(18): 2717–2719. doi:10.1364/OL.32.002717
22. Skorobogatiy M, Saitoh K, Koshiba M . Transverse lightwave circuits in microstructured opticalfibers: resonator arrays. Optics Express, 2006, 14(4): 1439–1450. doi:10.1364/OE.14.001439
AI Summary AI Mindmap
PDF(513 KB)

Accesses

Citations

Detail

Sections
Recommended

/