PDF(207 KB)
Optical properties and structure of InAs quantum
dots in near-infrared band
- JIA Guozhi1, YAO Jianghong1, SHU Yongchun1, WANG Zhanguo2
Author information
+
1.The Key Lab of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials, Ministry of Education, Tianjin Key Laboratory of Photonics Materials and Technology for Information Science, TEDA Applied Physics School, Nankai University; 2.The Key Lab of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials, Ministry of Education, Tianjin Key Laboratory of Photonics Materials and Technology for Information Science, TEDA Applied Physics School, Nankai University;Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences
Show less
History
+
Published |
05 Jun 2008 |
Issue Date |
05 Jun 2008 |
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Kang Y H, Park J, Lee U H, et al.. Effect of the dot size distribution on quantumdot infrared photoresponse and temperature-dependent dark current. Applied Physics Letters, 2003, 82(7): 1099–1101. doi:10.1063/1.1555711
2. Shchekin O B, Park G, Huffaker D L, et al.. Discrete energy level separation and the thresholdtemperature dependence of quantum dot lasers. Applied Physics Letters, 2000, 77(4): 466–468. doi:10.1063/1.127012
3. Mukhametzhanov I, Wei Z, Heitz R, et al.. Punctuated island growth: an approach to examinationand control of quantum dot density, size, and shape evolution. Applied Physics Letters, 1999, 75(1): 85–87. doi:10.1063/1.124284
4. Fan X W, Shan C X, Yang Y, et al.. Growth and characterestics of ZnCdSe and ZnSeSquantum dots under S-K and V-W modes. ChineseJournal of Luminescence, 2005, 26(1): 9–14 (in Chinese)
5. Liu H W, Laskar I R, Huang C P, et al.. Synthesis and applications of luminescent CdSequantum dots for OLEDs. Chinese Journalof Luminescence, 2005, 26(3): 321–326
6. Li Y F, Han P D, Chen Z, et al.. Growth and property of surface stress inducedInGaN quantum dots. Chinese Journal ofSemiconductors, 2003, 24(1): 39–43 (in Chinese)
7. Lee H, Lowe-Webb R R, Yang W, et al.. Formation of InAs/GaAs quantum dots by molecularbeam epitaxy: reversibility of the islanding transition. Applied Physics Letters, 1997, 71(16)2325–2327. doi:10.1063/1.120062
8. Schaffer W J, Lind M D, Kowalczyk S P, et al.. Nucleation and strain relaxation at the InAs/GaAs(100)heterojunction. Journal of Vacuum Scienceand Technology B, 1983, 1(3): 688–695. doi:10.1116/1.582579
9. Foxon C T, Joyce B A . Surface processes controllingthe growth of GaxIn1–xAs and GaxIn1-xP alloy films byMBE. Journal of Crystal Growth, 1978, 44(1): 75–83. doi:10.1016/0022-0248(78)90330-5
10. Leonard D, Krishnamurthy M, Fafard S, et al.. MBE Growth of quantum dots from strained coherentuniform islands of InGaAs on GaAs. Journalof Vacuum Science and Technology B, 1994, 12(2): 1063–1066. doi:10.1116/1.587088
11. El-Emawy A A, Birudavolu S, Wong P S, et al.. Formation trends in quantum dot growth usingmetalorganic chemical vapor deposition. Journal of Applied Physics, 2003, 93(6): 3529–3534. doi:10.1063/1.1543647
12. Dehaese O, Wallart X, Mollot F . Kinetic model of element III segregation during molecularbeam epitaxy of III-III8-V semiconductor compounds. Applied Physics Letters, 1995, 66(1): 52–54. doi:10.1063/1.114180
13. Jung S I, Yeo H Y, Yun I, et al.. Photoluminescence study on the growth of self-assembledInAs quantum dots: formation characteristics of bimodal-sized quantumdot. Physica E, 2006, 33(1): 280–283. doi:10.1016/j.physe.2006.03.150
14. Ribeiro E, Maltez R L, Carvalho W, et al.. Optical and structural properties of InAsP ternaryself-assembled quantum dots embedded in GaAs. Applied Physics Letters, 2002, 81(16): 2953–2955. doi:10.1063/1.1513215