Spectral imaging technology of epithelial tissue based on two-photon excited fluorescence and second-harmonic generation

LUO Tianshu1, CHEN Jianxin1, ZHUO Shuangmu1, JIANG Xingshan1, Chen Huanglin1, Luo Teng1, ZOU Qilian2

PDF(305 KB)
PDF(305 KB)
Front. Optoelectron. ›› 2008, Vol. 1 ›› Issue (1-2) : 33-38. DOI: 10.1007/s12200-008-0031-3

Spectral imaging technology of epithelial tissue based on two-photon excited fluorescence and second-harmonic generation

  • LUO Tianshu1, CHEN Jianxin1, ZHUO Shuangmu1, JIANG Xingshan1, Chen Huanglin1, Luo Teng1, ZOU Qilian2
Author information +
History +

Abstract

The layer structures of the esophageal and oral tissues were investigated by using spectral imaging technology based on two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG). Because spectral imaging technology allows a simultaneous record of both the spectra and image, it is capable of identifying the layered structures of the epithelial tissues, including the keratinizing layer, epithelial cell layer and stromal layer in the molecular level, which are strongly correlated to tissue pathology. All this work indicates that this technique has the potential to provide more accurate and comprehensive information for the early pathological diagnosis of tissues with the stratified squamous epithelia.

Cite this article

Download citation ▾
LUO Tianshu, CHEN Jianxin, ZHUO Shuangmu, JIANG Xingshan, Chen Huanglin, Luo Teng, ZOU Qilian. Spectral imaging technology of epithelial tissue based on two-photon excited fluorescence and second-harmonic generation. Front. Optoelectron., 2008, 1(1-2): 33‒38 https://doi.org/10.1007/s12200-008-0031-3

References

1. American Cancer SocietyCancer Facts and Figures 2007AtlantaAmerican Cancer Society 2007 .
2. Georgakoudi I, Jacobson B C, Müller M G, et al.. NAD(P)H and collagen as in vivo quantitativefluorescent biomarkers of epithelial precancerous changes. Cancer Research, 2002, 62(3): 682–687
3. Wilder-Smith P, Osann K, Hanna N, et al.. In vivo multiphoton fluorescence imaging: anovel approach to oral malignancy. Lasersin Surgery and Medicine, 2004, 35(2): 96–103. doi:10.1002/lsm.20079
4. Ziober B L, Turner M A, Palefsky J M, et al.. Type I collagen degradation by invasive oralsquamous cell carcinoma. Oral Oncology, 2000, 36(4): 365–372. doi:10.1016/S1368-8375(00)00019-1
5. Jiang D J, Wilson D F, Smith P S, et al.. Distribution of basal lamina type IV collagenand laminin in normal rat tongue mucosa and experimental oral carcinoma:ultrastructural immunolocalization and immunogold quantitation. European Journal of Cancer. Part B, Oral Oncology, 1994, 30B(4): 237–243. doi:10.1016/0964-1955(94)90004-3
6. Drezek R, Brookner C, Pavlova I, et al.. Autofluoresecence microscopy of fresh cervical-tissuesections reveals alterations in tissue biochemistry with dysplasia. Photochemistry and Photobiology, 2001, 73(6): 636–641. doi:10.1562/0031-8655(2001)073<0636:AMOFCT>2.0.CO;2
7. Pavlova I, Sokolov K, Drezek R, et al.. Microanatomical and biochemical origins of normaland precancerous cervical autofluorescence using laser-scanning fluorescenceconfocal microscopy. Photochemistry andPhotobiology, 2003, 77(5): 550–555. doi:10.1562/0031-8655(2003)077<0550:MABOON>2.0.CO;2
8. Ramanujam N . Fluorescencespectroscopy of neoplastic and non-neoplastic tissues. Neoplasia, 2000, 2(1–2): 89–117. doi:10.1038/sj.neo.7900077
9. Wu Y, Xi P, Qu J Y, et al.. Depth-resolved fluorescence spectroscopy ofnormal and dysplastic cervical tissue. Optics Express, 2005, 13(2): 382–388. doi:10.1364/OPEX.13.000382
10. Zhuo S M, Chen J X, Jiang X S, et al.. Visualizing extracellular matrix and sensingfibroblasts metabolism in human dermis by nonlinear spectral imaging. Skin Research and Technology, 2007, 13(4): 406–411. doi:10.1111/j.1600-0846.2007.00244.x
11. Palero J A, de Bruijn H S, van der Ploeg-van den Heuvel A, et al.. In vivo nonlinearspectral imaging in mouse skin. OpticsExpress, 2006, 14(10): 4395–4402. doi:10.1364/OE.14.004395
12. Zhuo S M, Chen J X, Luo T S, et al.. Multimode nonlinear optical imaging of the dermisin ex vivo human skin based on the combination of multichannel modeand lambda mode. Optics Express, 2006, 14(17): 7810–7820. doi:10.1364/OE.14.007810
13. Keszler A, Cabrini R L . Histometric study of leukoplakia,lichen planus and carcinoma in situ of oral mucosa. Journal of Oral Pathology, 1983, 12(5): 330–335. doi:10.1111/j.1600-0714.1983.tb00344.x
14. Olszewska E, Sudhoff H . Comparative cytokeratin distributionpatterns in cholesteatoma epithelium. Histologyand Histopathology, 2007, 22(1): 37–42
15. Pena A M, Strupler M, Boulesteix T, et al.. Spectroscopic analysis of keratin endogenoussignal for skin multiphoton microscopy. Optics Express, 2005, 13(16): 6268–6274. doi:10.1364/OPEX.13.006268
16. Sun J, Shilagard T, Bell B, et al.. In vivo multimodal nonlinear optical imagingof mucosal tissue. Optics Express, 2004, 12(11): 2478–2486. doi:10.1364/OPEX.12.002478
17. Masters B R, So P T C, Gratton E . Multiphoton excitation fluorescence microscopy and spectroscopyof in vivo human skin. Biophysical Journal, 1997, 72(6): 2405–2412
18. Gauderon R, Lukins P B, Sheppard C J R . Simultaneous multichannel nonlinear imaging: combinedtwo-photon excited fluorescence and second-harmonic generation microscopy. Micron, 2001, 32(7): 685–689. doi:10.1016/S0968-4328(00)00067-6
AI Summary AI Mindmap
PDF(305 KB)

Accesses

Citations

Detail

Sections
Recommended

/