Real-time monitoring in fabrication of PPKTP crystals utilizing electro-optical effect

Ren Tiexiong1, Yu Jian1, Sang Mei1, Fu Weijia1, Ni Wenjun1, Kang Yuzhuo1, Li Shichen1, Hu Yonglan2, Shi Ruize2

PDF(210 KB)
PDF(210 KB)
Front. Optoelectron. ›› 2008, Vol. 1 ›› Issue (1-2) : 151-155. DOI: 10.1007/s12200-008-0025-1

Real-time monitoring in fabrication of PPKTP crystals utilizing electro-optical effect

  • Ren Tiexiong1, Yu Jian1, Sang Mei1, Fu Weijia1, Ni Wenjun1, Kang Yuzhuo1, Li Shichen1, Hu Yonglan2, Shi Ruize2
Author information +
History +

Abstract

Compared with other nonlinear optical materials, KTP crystals have prominent advantages. However, they also have a high conductivity and become difficult to efficiently control domain-reverse with the conventional method, due to the existence of ionic current. To conquer the difficulty, it is necessary to monitor the polarization-reversal process of KTP crystals in real time. The real-time monitoring method in the fabrication of PPKTP, short for periodically-poled KTiOPO4, is carried out by utilizing electro-optical effect. The principle is analyzed theoretically and the result demonstrates the validity of the method experimentally. Compared with the result without using the monitoring method, the conversion efficiency of PPKTP crystal increases by many times. It is proved that this method can be used to enhance the quality and repeatability of PPKTP fabrication, and is also effective to examine the quality of PPKTP crystals.

Cite this article

Download citation ▾
Ren Tiexiong, Yu Jian, Sang Mei, Fu Weijia, Ni Wenjun, Kang Yuzhuo, Li Shichen, Hu Yonglan, Shi Ruize. Real-time monitoring in fabrication of PPKTP crystals utilizing electro-optical effect. Front. Optoelectron., 2008, 1(1-2): 151‒155 https://doi.org/10.1007/s12200-008-0025-1

References

1. Armstrong A, Bloembergen N, Ducuing J, et al.. Interactions between light waves in a nonlineardielectric. Physical Review, 1962, 127(6): 1918–1939. doi:10.1103/PhysRev.127.1918
2. Franken P A, Ward J F . Optical harmonics and nonlinearphenomena. Reviews of Modern Physics, 1963, 35(1): 23–39. doi:10.1103/RevModPhys.35.23
3. Yamada M, Nada N, Saitoh M, et al.. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an externalfield for efficient blue second-harmonic generation. Applied Physics Letters, 1993, 62(5): 435–436. doi:10.1063/1.108925
4. Pasiskevicius V, Karlsson H, Laurell F, et al.. High-efficiency parametric oscillation and spectralcontrol in the red spectral region with periodically poled KTiOPO4. Optics Letters, 2001, 26(10): 710–712. doi:10.1364/OL.26.000710
5. Fejer M M, Magel G A, Jundt D H, et al.. Quasi-phased-matched second harmonic generationtuning and tolerances. IEEE Journal ofQuantum Electronics, 1992, 28(11): 2631–2654. doi:10.1109/3.161322
6. Zhu S N, Zhu Y Y, Qin Y Q, et al.. Experimental realization of second harmonicgeneration in a Fibonacci optical superlattice of LiTaO3. Physical Review Letters, 1997, 78(14): 2752–2755. doi:10.1103/PhysRevLett.78.2752
7. Popov S V, Chernikov S V, Taylor J R . 6-W average power green light generation using high powerytterbium fiber amplifier and periodically poled KTP. Optics Communications, 2000, 174(1–4): 231–234. doi:10.1016/S0030-4018(99)00705-1
8. Yu J, Xue T, Yang T X, et al.. Fan-out grating quasi-phase-matched second harmonicgeneration in LiNbO3 waveguide. Acta Optica Sinica, 2002, 22(8): 921–923 (in Chinese)
9. Yu J, Ni W J, Xue T, et al.. Frequency doubled CW green light generationin periodically poled KTiOPO4 crystal. Acta Optica Sinica, 2003, 23(7): 793–795 (in Chinese)
10. Xue T, Yu J, Yang T X, et al.. Theoretical analysis of the 1.5 μm band all-opticalwavelength converters based on cascaded second-order nonlinearityin LiNbO3 waveguide.Acta Physica Sinica, 2002, 51(1): 91–98 (in Chinese)
11. Xue T, Yu J, Yang T X, et al.. Numerical analysis and optimization of quasi-phase-matchedsecond-harmonic-generation in in LiNbO3 waveguide. Acta Physica Sinica, 2002, 51(3): 565–572 (in Chinese)
12. Xue T, Yu J, Yang T X, et al.. Analysis of all-optical switching in periodicallypoled LiNbO3 waveguide. Acta Physica Sinica, 2002, 51(7): 1521–1529 (in Chinese)
13. Xue T, Yu J, Yang T X, et al.. Tunability and tolerance of optical parametricoscillator in periodically poled lithium niobate. Acta Physica Sinica, 2002, 51(11): 2528–2535 (in Chinese)
14. Ishizuki H, Shoji I, Taira T . High-energy quasi-phase-matched optical parametric oscillationin a 3-mm-thick periodically poled MgO:LiNbO3 device. Optics Letters, 2004, 29(21): 2527–2529. doi:10.1364/OL.29.002527
15. Tiihonen M, Pasiskevicius V, Laurell F . Broadly tunable picosecond narrowband pulses in a periodically-poledKTiOPO4 parametric amplifier. Optics Express, 2006, 14(19): 8728–8736. doi:10.1364/OE.14.008728
16. Rosenman G, Skliar A, Oron M, et al.. Polarization reversal in KTiOPO4 crystals. Journal of Physics D-AppliedPhysics, 1997, 30(2): 277–282. doi:10.1088/0022-3727/30/2/016
17. Guan Q, Wang J, Cui W, et al.. The DC conductive property of KTiOPO4 crystal along its Z-axis. Crystal Research Technology, 1998, 33(5): 821–825. doi:10.1002/(SICI)1521-4079(1998)33:5<821::AID-CRAT821>3.0.CO;2-4
18. Bierlein J D, Arweiler C B . Electro-optic and dielectricproperties of KTiOPO4. Applied Physics Letters, 1986, 49(15): 917–919. doi:10.1063/1.97483
19. Kato K . Parametricoscillation at 3.2 μm in KTP pumped at 1.064 μm. IEEE Journal of Quantum Electronics, 1991, 27(5): 1137–1140. doi:10.1109/3.83367
20. Wang S H . Fabrication and characterization of periodically-poled KTP and Rb-dopedKTP for applications in the visible and UV. Dissertation for the DoctoralDegree. Stockholm: Sweden Royal Institute of Technology, 2005, 40
AI Summary AI Mindmap
PDF(210 KB)

Accesses

Citations

Detail

Sections
Recommended

/