Tunable wavelength converters of picosecond pulses based on periodically poled LiNbO waveguides

WANG Jian, SUN Junqiang, SUN Qizhen

PDF(297 KB)
PDF(297 KB)
Front. Optoelectron. ›› 2008, Vol. 1 ›› Issue (1-2) : 58-63. DOI: 10.1007/s12200-008-0016-2

Tunable wavelength converters of picosecond pulses based on periodically poled LiNbO waveguides

  • WANG Jian, SUN Junqiang, SUN Qizhen
Author information +
History +

Abstract

A tunable wavelength conversion between picosecond pulses is experimentally demonstrated by using cascaded sum- and difference-frequency generation (cSFG/DFG) in a periodically poled LiNbO3 (PPLN) waveguide. The pulsed signal with 40 GHz repetition rate and 1.57 ps pulse width is adopted. When the input signal and the first control wavelengths are kept at 1554.2 and 1532.5 nm, respectively, the output signal wavelength can be tuned from 1536.0 to 1545.2 nm as the second control wavelength varies from 1550.5 to 1541.0 nm. By varying the first control wavelength to satisfy the quasi-phase matching (QPM) condition for sum-frequency generation (SFG) and simultaneously adjusting the second control wavelength, the tunable output signal wavelength can also be obtained when the input signal wavelength is changed. In the experiment, the amplified spontaneous emission (ASE) noise from the erbium-doped fiber amplifier (EDFA) is effectively suppressed by employing two narrow band tunable filters. Therefore, the wavelength down- and up-conversions are simultaneously observed.

Cite this article

Download citation ▾
WANG Jian, SUN Junqiang, SUN Qizhen. Tunable wavelength converters of picosecond pulses based on periodically poled LiNbO waveguides. Front. Optoelectron., 2008, 1(1-2): 58‒63 https://doi.org/10.1007/s12200-008-0016-2

References

1. Yoo S J B . Wavelength conversion technologies for WDM network applications. Journal of Lightwave Technology, 1996, 14(6): 955–966. doi:10.1109/50.511595
2. Ellis A D, Kelly A E, Nesset D, et al.. Error free 100 Gbit/s wavelength conversionusing grating assisted cross-gain modulation in 2 mm long semiconductoramplifier. Electronics Letters, 1998, 34(20): 1958–1959. doi:10.1049/el:19981214
3. Joergensen C, Danielsen S L, Durhuus T, et al.. Wavelength conversion by optimized monolithicintegrated Mach-Zehnder interferometer. IEEE Photonics Technology Letters, 1996, 8(4): 521–523. doi:10.1109/68.491213
4. Højfeldt S, Bischoff S, Mørk J . All-optical wavelength conversion and signal regenerationusing an electroabsorption modulator. Journalof Lightwave Technology, 2000, 18(8): 1121–1127. doi:10.1109/50.857758
5. Liu W, Sun J Q . A novel scheme for polarization-insensitiveoptical wavelength conversion based on four-wave mixing in semiconductoroptical amplifier. Acta Optica Sinica, 2001, 21(9): 1047–1051 (in Chinese)
6. Zhu X Z, Zhou J, Lou Q H, et al.. Experimental investigation of quasi-CW frequency-doublingof broad band fiber laser in periodically poled lithium niobate. Acta Optica Sinica, 2004, 24(10): 1330–1334 (inChinese)
7. Zhu X Z, Zhou J, Lou Q H, et al.. 59 mW green light second harmonic generationof quasi-CW double-cladding fiber laser in periodically poled lithiumniobate. Chinese Journal of Lasers, 2004, 31(7): 777–779
8. Zhang B G, Yao J Q, Zhang H, et al.. Angle-tuned signal-resonated optical parametricoscillator based on periodically poled lithium niobate. Chinese Optics Letters, 2003, 1(6): 346–349
9. Chou M H, Hauden J, Arbore M A, et al.. 1.5-μm-band wavelength conversion based ondifference-frequency generation in LiNbO3 waveguideswith integrated coupling structures. OpticsLetters, 1998, 23(13): 1004–1006. doi:10.1364/OL.23.001004
10. Zhou B, Xu C Q, Chen B . Comparison of difference-frequency generation and cascaded χ(2) basedwavelength conversions in LiNbO3 quasi-phase-matchedwaveguides. Journal of the Optical Societyof America B–Optical Physics, 2003, 20(5): 846–852. doi:10.1364/JOSAB.20.000846
11. Chou M H, Brener I, Fejer M M, et al.. 1.5-μm-band wavelength conversion based oncascaded second-order nonlinearity in LiNbO3 waveguides. IEEE Photonics TechnologyLetters, 1999, 11(6): 653–655. doi:10.1109/68.766774
12. Sun J Q, Liu W, Tian J, et al.. Multichannel wavelength conversion exploitingcascaded second-order nonlinearity in LiNbO3 waveguides. IEEE Photonics TechnologyLetters, 2003, 15(12): 1743–1745. doi:10.1109/LPT.2003.819713
13. Wang J, Sun J Q, Li J, et al.. Single-to-dual channel wavelength conversionof picosecond pulses using PPLN-based double-ring fibre laser. Electronics Letters, 2006, 42(4): 236–238. doi:10.1049/el:20064131
14. Chen B, Xu C Q . Analysis of novel cascaded χ(2) (SFG+ DFG) wavelength conversions in quasi-phase-matched waveguides. IEEE Journal of Quantum Electronics, 2004, 40(3): 256–261. doi:10.1109/JQE.2003.823023
15. Yu S, Gu W . A tunable wavelength conversionand wavelength add/drop scheme based on cascaded second-order nonlinearitywith double-pass configuration. IEEE Journalof Quantum Electronics, 2005, 41(7): 1007–1012. doi:10.1109/JQE.2005.848916
16. Lee Y L, Yu B-A, Jung C, et al.. All-optical wavelength conversion and tuningby the cascaded sum- and difference frequency generation (cSFG/DFG)in a temperature gradient controlled Ti:PPLN channel waveguide. Optics Express, 2005, 13(8): 2988–2993. doi:10.1364/OPEX.13.002988
17. Wang J, Sun J Q, Luo C H, et al.. Experimental demonstration of wavelength conversionbetween ps-pulses based on cascaded sum- and difference frequencygeneration (SFG + DFG) in LiNbO3 waveguides. Optics Express, 2005, 13(19): 7405–7414. doi:10.1364/OPEX.13.007405
18. Min Y H, Lee J H, Lee Y L, et al.. Tunable all-optical wavelength conversion of5 ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG)in a Ti:PPLN waveguide. In: : Proceedingsof Optical Fiber Communications Conference (OFC'03), Atlanta. 2003, 2: 767–768
AI Summary AI Mindmap
PDF(297 KB)

Accesses

Citations

Detail

Sections
Recommended

/