PDF(297 KB)
Tunable wavelength converters of picosecond pulses
based on periodically poled LiNbO waveguides
- WANG Jian, SUN Junqiang, SUN Qizhen
Author information
+
Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology;
Show less
History
+
Published |
05 Jun 2008 |
Issue Date |
05 Jun 2008 |
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Yoo S J B . Wavelength conversion technologies for WDM network applications. Journal of Lightwave Technology, 1996, 14(6): 955–966. doi:10.1109/50.511595
2. Ellis A D, Kelly A E, Nesset D, et al.. Error free 100 Gbit/s wavelength conversionusing grating assisted cross-gain modulation in 2 mm long semiconductoramplifier. Electronics Letters, 1998, 34(20): 1958–1959. doi:10.1049/el:19981214
3. Joergensen C, Danielsen S L, Durhuus T, et al.. Wavelength conversion by optimized monolithicintegrated Mach-Zehnder interferometer. IEEE Photonics Technology Letters, 1996, 8(4): 521–523. doi:10.1109/68.491213
4. Højfeldt S, Bischoff S, Mørk J . All-optical wavelength conversion and signal regenerationusing an electroabsorption modulator. Journalof Lightwave Technology, 2000, 18(8): 1121–1127. doi:10.1109/50.857758
5. Liu W, Sun J Q . A novel scheme for polarization-insensitiveoptical wavelength conversion based on four-wave mixing in semiconductoroptical amplifier. Acta Optica Sinica, 2001, 21(9): 1047–1051 (in Chinese)
6. Zhu X Z, Zhou J, Lou Q H, et al.. Experimental investigation of quasi-CW frequency-doublingof broad band fiber laser in periodically poled lithium niobate. Acta Optica Sinica, 2004, 24(10): 1330–1334 (inChinese)
7. Zhu X Z, Zhou J, Lou Q H, et al.. 59 mW green light second harmonic generationof quasi-CW double-cladding fiber laser in periodically poled lithiumniobate. Chinese Journal of Lasers, 2004, 31(7): 777–779
8. Zhang B G, Yao J Q, Zhang H, et al.. Angle-tuned signal-resonated optical parametricoscillator based on periodically poled lithium niobate. Chinese Optics Letters, 2003, 1(6): 346–349
9. Chou M H, Hauden J, Arbore M A, et al.. 1.5-μm-band wavelength conversion based ondifference-frequency generation in LiNbO3 waveguideswith integrated coupling structures. OpticsLetters, 1998, 23(13): 1004–1006. doi:10.1364/OL.23.001004
10. Zhou B, Xu C Q, Chen B . Comparison of difference-frequency generation and cascaded χ(2) basedwavelength conversions in LiNbO3 quasi-phase-matchedwaveguides. Journal of the Optical Societyof America B–Optical Physics, 2003, 20(5): 846–852. doi:10.1364/JOSAB.20.000846
11. Chou M H, Brener I, Fejer M M, et al.. 1.5-μm-band wavelength conversion based oncascaded second-order nonlinearity in LiNbO3 waveguides. IEEE Photonics TechnologyLetters, 1999, 11(6): 653–655. doi:10.1109/68.766774
12. Sun J Q, Liu W, Tian J, et al.. Multichannel wavelength conversion exploitingcascaded second-order nonlinearity in LiNbO3 waveguides. IEEE Photonics TechnologyLetters, 2003, 15(12): 1743–1745. doi:10.1109/LPT.2003.819713
13. Wang J, Sun J Q, Li J, et al.. Single-to-dual channel wavelength conversionof picosecond pulses using PPLN-based double-ring fibre laser. Electronics Letters, 2006, 42(4): 236–238. doi:10.1049/el:20064131
14. Chen B, Xu C Q . Analysis of novel cascaded χ(2) (SFG+ DFG) wavelength conversions in quasi-phase-matched waveguides. IEEE Journal of Quantum Electronics, 2004, 40(3): 256–261. doi:10.1109/JQE.2003.823023
15. Yu S, Gu W . A tunable wavelength conversionand wavelength add/drop scheme based on cascaded second-order nonlinearitywith double-pass configuration. IEEE Journalof Quantum Electronics, 2005, 41(7): 1007–1012. doi:10.1109/JQE.2005.848916
16. Lee Y L, Yu B-A, Jung C, et al.. All-optical wavelength conversion and tuningby the cascaded sum- and difference frequency generation (cSFG/DFG)in a temperature gradient controlled Ti:PPLN channel waveguide. Optics Express, 2005, 13(8): 2988–2993. doi:10.1364/OPEX.13.002988
17. Wang J, Sun J Q, Luo C H, et al.. Experimental demonstration of wavelength conversionbetween ps-pulses based on cascaded sum- and difference frequencygeneration (SFG + DFG) in LiNbO3 waveguides. Optics Express, 2005, 13(19): 7405–7414. doi:10.1364/OPEX.13.007405
18. Min Y H, Lee J H, Lee Y L, et al.. Tunable all-optical wavelength conversion of5 ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG)in a Ti:PPLN waveguide. In: : Proceedingsof Optical Fiber Communications Conference (OFC'03), Atlanta. 2003, 2: 767–768