Enhancement strategies for light yield and spatial resolution of perovskite scintillators in indirect X-ray detection

Rui Liu , Chengxu Lin , Zhiyong Liu , Chenyu Li , Shuang Xi , Minggao Zhang , Xingyue Liu , Guanglan Liao , Tielin Shi

ENG. Mech. Eng. ›› 2026, Vol. 21 ›› Issue (1) : 100870

PDF (5263KB)
ENG. Mech. Eng. ›› 2026, Vol. 21 ›› Issue (1) :100870 DOI: 10.1007/s11465-026-0870-x
REVIEW ARTICLE

Enhancement strategies for light yield and spatial resolution of perovskite scintillators in indirect X-ray detection

Author information +
History +
PDF (5263KB)

Abstract

Thanks to the high quantum efficiency, large migration lifetime, excellent X-ray absorption capability, and ease of crystal growth, perovskite scintillators have received widespread attention in recent years and have become highly competitive X-ray detection scintillators. Compared with traditional inorganic scintillators, the tunable structure and diverse chemical composition of perovskite scintillators are unique advantages in optimizing their scintillation performance. Fully understanding the relationship between scintillation characteristics with structure and chemical composition of perovskite scintillators is the key to achieve high-sensitivity detection and high-resolution imaging. The latest progress and future prospect of key performance indicators such as light yield and spatial resolution in perovskite X-ray indirect detection and imaging are reviewed herein. First, the basic principles of X-ray indirect detection and the key performance parameters of X-ray indirect detectors are discussed. Then, the methods to improve the light yield of perovskite scintillators are discussed from the aspects of the characteristics of perovskite materials themselves, the introduction of ion doping to adjust the perovskite structure, and the improvement of scintillation preparation processes. We further discuss how to suppress fluorescence crosstalk to improve the spatial resolution of X-ray imaging from the aspects of material size, scintillation preparation process, and scintillation structure. Finally, we emphasize the challenges that current perovskite scintillators still face and provide prospects for their future development.

Graphical abstract

Keywords

perovskite scintillator / indirect X-ray detection / light yield / spatial resolution / enhancement strategy

Cite this article

Download citation ▾
Rui Liu, Chengxu Lin, Zhiyong Liu, Chenyu Li, Shuang Xi, Minggao Zhang, Xingyue Liu, Guanglan Liao, Tielin Shi. Enhancement strategies for light yield and spatial resolution of perovskite scintillators in indirect X-ray detection. ENG. Mech. Eng., 2026, 21(1): 100870 DOI:10.1007/s11465-026-0870-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kakavelakis G , Gedda M , Panagiotopoulos A , Kymakis E , Anthopoulos T D , Petridis K . Metal halide perovskites for high‐energy radiation detection. Advanced Science, 2020, 7(22): 2002098

[2]

Wei H , Huang J . Halide lead perovskites for ionizing radiation detection. Nature Communications, 2019, 10(1): 1066

[3]

Nikl M . Scintillation detectors for X‐rays. Measurement Science & Technology, 2006, 17(4): R37–R54

[4]

Androulakis J , Peter S C , Li H , Malliakas C D , Peters J A , Liu Z , Wessels B W , Song J H , Jin H , Freeman A J , Kanatzidis M G . Dimensional reduction: a design tool for new radiation detection materials. Advanced Materials, 2011, 23(36): 4163–4167

[5]

Szeles C. CdZnTe and CdTe materials for X‐ray and gamma ray radiation detector applications. Physica Status Solidi B:Basic Research, 2004, 241(3): 783–790

[6]

Gill H S , Elshahat B , Kokil A , Li L , Mosurkal R , Zygmanski P , Sajo E , Kumar J . Flexible perovskite based X-ray detectors for dose monitoring in medical imaging applications. Physica Medica, 2018, 5: 20–23

[7]

Haff R P , Toyofuku N . X-ray detection of defects and contaminants in the food industry. Sensing and Instrumentation for Food Quality and Safety, 2008, 2(4): 262–273

[8]

Duan X , Cheng J , Zhang L , Xing Y , Chen Z , Zhao Z . X-ray cargo container inspection system with few-view projection imaging. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 598(2): 439–444

[9]

Chen Q , Wu J , Ou X , Huang B , Almutlaq J , Zhumekenov A A , Guan X , Han S , Liang L , Yi Z , Li J , Xie X , Wang Y , Li Y , Fan D , Teh D B L , All A H , Mohammed O F , Bakr O M , Wu T , Bettinelli M , Yang H , Huang W , Liu X . All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561(7721): 88–93

[10]

Kasap S , Frey J B , Belev G , Tousignant O , Mani H , Greenspan J , Laperriere L , Bubon O , Reznik A , DeCrescenzo G , Karim K S , Rowlands J A . Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors, 2011, 11(5): 5112–5157

[11]

Pacella D . Energy-resolved X-ray detectors: the future of diagnostic imaging. Reports in Medical Imaging, 2015, 8: 1–13

[12]

Chen T , Li X , Wang Y , Lin F , Liu R , Zhang W , Yang J , Wang R , Wen X , Meng B , Xu X , Wang C . Centimeter-sized Cs3Cu2I5 single crystals grown by oleic acid assisted inverse temperature crystallization strategy and their films for high-quality X-ray imaging. Journal of Energy Chemistry, 2023, 79: 382–389

[13]

Heo J H , Shin D H , Park J K , Kim D H , Lee S J , Im S H . High‐performance next‐generation perovskite nanocrystal scintillator for nondestructive X‐ray imaging. Advanced Materials, 2018, 30(40): 1801743

[14]

Irede E L, Aworinde O R, Lekan O K, Amienghemhen O D, Okonkwo T P, Onivefu A P, Ifijen I H. Medical imaging: a critical review on X-ray imaging for the detection of infection. Biomedical Materials & Devices, 2026, 4: 1–45

[15]

Kim Y C , Kim K H , Son D , Jeong D , Seo J , Choi Y S , Han I T , Lee S Y , Park N . Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 2017, 550(7674): 87–91

[16]

Mengesha W , Taulbee T D , Rooney B D , Valentine J D . Light yield nonproportionality of CsI(Tl), CsI(Na), and YAP. IEEE Transactions on Nuclear Science, 1998, 45(3): 456–461

[17]

Kryemadhi A , Barner L , Grove A , Mohler J , Roth A . A LYSO crystal array readout by silicon photomultipliers as compact detector for space applications. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 912: 93–96

[18]

Weber S , Christ D , Kurzeja M , Engels R , Kemmerling G , Halling H . Comparison of LuYAP, LSO, and BGO as scintillators for high resolution PET detectors. IEEE Transactions on Nuclear Science, 2003, 50(5): 1370–1372

[19]

van Eijk C W E . Inorganic scintillators in medical imaging. Physics in Medicine and Biology, 2002, 47(8): R85

[20]

Zheng D , Pauporté T . Advances in optical imaging and optical communications based on high‐quality halide perovskite photodetectors. Advanced Functional Materials, 2024, 34(11): 2311205

[21]

Fakharuddin A , Gangishetty M K , Abdi-Jalebi M , Chin S , Bin Mohd Yusoff A R , Congreve D N , Tress W , Deschler F , Vasilopoulou M , Bolink H J . Perovskite light-emitting diodes. Nature Electronics, 2022, 5(4): 203–216

[22]

Teale S , Degani M , Chen B , Sargent E H , Grancini G . Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells. Nature Energy, 2024, 9(7): 779–792

[23]

Zhao Z , Hao J , Jia B , Chu D , Pi J , Zhang Y , Zai S , Liang Y , Li Y , Feng Z , Zheng X , Wei M , Zhao L , Shi R , Liu S F , Liu Y . Epitaxial welding of 3D and 2D perovskite single crystals for direct-indirect energy-conversion X-ray detection and imaging. ACS Energy Letters, 2024, 9(6): 2758–2766

[24]

Cao F , Yu D , Ma W , Xu X , Cai B , Yang Y M , Liu S , He L , Ke Y , Lan S , Choy K , Zeng H . Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept. ACS Nano, 2020, 14(5): 5183–5193

[25]

Wang T , Yao S , Yan S , Yu J , Deng Z , Yakovlev A N , Meng B , Qiu J , Xu X . High thermal stability of copper-based perovskite scintillators for high-temperature X-ray detection. ACS Applied Materials & Interfaces, 2023, 15(19): 23421–23428

[26]

Varnakavi N , Rajavaram R , Gupta K , Cha P R , Lee N . Scintillation performance of Mn(II)‐doped Cs2NaBiCl6 double perovskite nanocrystals for X‐ray imaging applications. Advanced Optical Materials, 2024, 12(9): 2301868

[27]

Xu H , Liang W , Zhang Z , Cao C , Yang W , Zeng H , Lin Z , Zhao D , Zou G . 2D Perovskite Mn2+‐doped Cs2CdBr2Cl2 scintillator for low‐dose high‐resolution X‐ray imaging. Advanced Materials, 2023, 35(26): 2300136

[28]

Gao W , Niu G , Yin L , Yang B , Yuan J , Zhang D , Xue K , Miao X , Hu Q , Du X , Tang J . One-dimensional all-inorganic K2CuBr3 with violet emission as efficient X-ray scintillators. ACS Applied Electronic Materials, 2020, 2(7): 2242–2249

[29]

Lv H , Hao Q , Yan N , Ma L , Chen M . Large-area in situ growth of a flexible perovskite scintillator film for X-ray indirect detection applications. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2024, 12(24): 8970–8976

[30]

Lee K , Lee J , Han D , Liu H , Kang J . A study on improving the sensitivity of indirect X-ray detectors by adding hybrid perovskite quantum dots. Coatings, 2022, 12(4): 492

[31]

Cho S , Kim S , Kim J , Jo Y , Ryu I , Hong S , Lee J , Cha S , Nam E B , Lee S U , Noh S K , Kim H , Kwak J , Im H . Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scin-tillators. Light, Science & Applications, 2020, 9(1): 156

[32]

Lin C , Li C , Liu R , Zhang X , Liu X , Sun B , Shi T , Liu Z , Liao G . Preparing the In-doped lead-free Cs3Cu2I5 perovskite scintillator by a co-firing technique for its application in high-resolution X-ray imaging. Sensors and Actuators A: Physical, 2024, 372: 115269

[33]

Wang Z , Guo J , Lin Q S , Rao G , Zhao J , Yang C , He W , Wang C , Zhang Z . Novel, green, and scalable aqueous synthesis of yellow–green emitting Cs3Cu2Cl5 scintillator and its application in high‐resolution TFT panel for X‐ray imaging detector. Advanced Optical Materials, 2023, 11(3): 2202059

[34]

Jana A , Cho S , Patil S A , Meena A , Jo Y , Sree V G , Park Y , Kim H , Im H , Taylor R A . Perovskite: scintillators, direct detectors, and X-ray imagers. Materials Today, 2022, 55: 110–136

[35]

Zhu W , Ma W , Su Y , Chen Z , Chen X , Ma Y , Bai L , Xiao W , Liu T , Zhu H , Liu X , Liu H , Liu X , Yang Y . Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light, Science & Applications, 2020, 9(1): 112

[36]

Hu Q , Deng Z , Hu M , Zhao A , Zhang Y , Tan Z , Niu G , Wu H , Tang J . X-ray scintillation in lead-free double perovskite crystals. Science China Chemistry, 2018, 61(12): 1581–1586

[37]

Cheng S , Beitlerova A , Kucerkova R , Mihokova E , Nikl M , Zhou Z , Ren G , Wu Y . Non-hygroscopic, self-absorption free, and efficient 1D CsCu2I3 perovskite single crystal for radiation detection. ACS Applied Materials & Interfaces, 2021, 13(10): 12198–12202

[38]

Cheng S , Nikl M , Beitlerova A , Kucerkova R , Du X , Niu G , Jia Y , Tang J , Ren G , Wu Y . Ultrabright and highly efficient all‐inorganic zero‐dimensional perovskite scintillators. Advanced Optical Materials, 2021, 9(13): 2100460

[39]

Zhang F , Zhou Y , Chen Z , Wang M , Ma Z , Chen X , Jia M , Wu D , Xiao J , Li X , Zhang Y , Shi Z , Shan C . Thermally activated delayed fluorescence zirconium‐based perovskites for large‐area and ultraflexible X‐ray scintillator screens. Advanced Materials, 2022, 34(43): 2204801

[40]

Cheng S , Beitlerova A , Kucerkova R , Nikl M , Ren G , Wu Y . Zero‐dimensional Cs3Cu2I5 perovskite single crystal as sensitive X‐ray and γ‐ray scintillator. Physica Status Solidi. Rapid Research Letters, 2020, 14(11): 2000374

[41]

Lian L , Zheng M , Zhang W , Yin L , Du X , Zhang P , Zhang X , Gao J , Zhang D , Gao L , Niu G , Song H , Chen R , Lan X , Tang J , Zhang J . Efficient and reabsorption‐free radioluminescence in Cs3Cu2I5 nanocrystals with self‐trapped excitons. Advanced Science, 2020, 7(11): 2000195

[42]

Xu Q , Wang J , Shao W , Ouyang X , Wang X , Zhang X , Guo Y , Ouyang X . A solution-processed zero-dimensional all-inorganic perovskite scintillator for high resolution gamma-ray spectroscopy detection. Nanoscale, 2020, 12(17): 9727–9732

[43]

Yang B , Yin L , Niu G , Yuan J H , Xue K H , Tan Z , Miao X S , Niu M , Du X , Song H , Lifshitz E , Tang J . Lead‐free halide Rb2CuBr3 as sensitive X‐ray scintillator. Advanced Materials, 2019, 31(44): 1904711

[44]

Wu S , Liang C , Zhang J , Wu Z , Wang X L , Zhou R , Wang Y , Wang S , Li D S , Wu T . A photoconductive X‐ray detector with a high figure of merit based on an open‐framework chalcogenide semiconductor. Angewandte Chemie International Edition, 2020, 59(42): 18605–18610

[45]

Li Z , Zhou F , Yao H , Ci Z , Yang Z , Jin Z . Halide perovskites for high-performance X-ray detector. Materials Today, 2021, 48: 155–175

[46]

Liu Y , Xu Z , Yang Z , Zhang Y , Cui J , He Y , Ye H , Zhao K , Sun H , Lu R , Liu M , Kanatzidis M G , Liu S F . Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging. Matter, 2020, 3(1): 180–196

[47]

Han K , Sakhatskyi K , Jin J , Zhang Q , Kovalenko M V , Xia Z . Seed‐crystal‐induced cold sintering toward metal halide transparent ceramic scintillators. Advanced Materials, 2022, 34(17): 2110420

[48]

Su B , Jin J , Han K , Xia Z . Ceramic wafer scintillation screen by utilizing near‐unity blue‐emitting lead‐free metal halide (C8H20N)2Cu2Br4. Advanced Functional Materials, 2023, 33(5): 2210735

[49]

Wang Z , Xu X , Wang S , Xu H , Xu W , Zeng Q , Deng G , Jiang Y , Wu S . Cerium doping double perovskite scintillator for sensitive X‐ray detection and imaging. Chemistry, 2021, 27(35): 9071–9076

[50]

He T , Zhou Y , Wang X , Yin J , Gutiérrez-Arzaluz L , Wang J , Zhang Y , Bakr O M , Mohammed O F . High-performance copper-doped perovskite-related silver halide X-ray imaging scintillator. ACS Energy Letters, 2022, 7(8): 2753–2760

[51]

Li H , Zhang Y , Zhou M , Ding H , Zhao L , Jiang T , Yang H Y , Zhao F , Chen W , Teng Z , Qiu J , Yu X , Yang Y M , Xu X . A Solar-blind perovskite scintillator realizing portable X-ray imaging. ACS Energy Letters, 2022, 7(9): 2876–2883

[52]

Parobek D , Roman B J , Dong Y , Jin H , Lee E , Sheldon M , Son D H . Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals. Nano Letters, 2016, 16(12): 7376–7380

[53]

Liu W , Lin Q , Li H , Wu K , Robel I , Pietryga J M , Klimov V I . Mn2+‐doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. Journal of the American Chemical Society, 2016, 138(45): 14954–14961

[54]

Shao W , Wang X , Zhang Z , Huang J , Han Z , Pi S , Xu Q , Zhang X , Xia X , Liang H . Highly efficient and flexible scintillation screen based on manganese (II) activated 2D perovskite for planar and nonplanar high‐resolution X‐ray imaging. Advanced Optical Materials, 2022, 10(6): 2102282

[55]

Xie A , Hettiarachchi C , Maddalena F , Witkowski M E , Makowski M , Drozdowski W , Arramel A , Wee A T S , Springham S V , Vuong P Q , Kim H J , Dujardin C , Coquet P , Birowosuto M D , Dang C . Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detection. Communications Materials, 2020, 1(1): 37

[56]

Cala R , Frank I , Pagano F , Maddalena F , Dang C , Birowosuto M D , Auffray E . Sub-100-picosecond time resolution from undoped and Li-doped two-dimensional perovskite scintillators. Applied Physics Letters, 2022, 120(24): 241904

[57]

Wibowo A , Sheikh M A K , Diguna L J , Ananda M B , Marsudi M A , Arramel A , Zeng S , Wong L J , Birowosuto M D . Development and challenges in perovskite scintillators for high-resolution imaging and timing applications. Communications Materials, 2023, 4(1): 21

[58]

Chen H , Wang Q , Peng G , Wang S , Lei Y , Wang H , Yang Z , Sun J , Li N , Zhao L , Lan W , Jin Z . Cesium lead halide nanocrystals based flexible X‐ray imaging screen and visible dose rate indication on paper substrate. Advanced Optical Materials, 2022, 10(8): 2102790

[59]

Hu X , Yan P , Ran P , Lu L , Leng J , Yang Y M , Li X . In situ fabrication of Cs3Cu2I5:Tl nanocrystal films for high-resolution and ultrastable X-ray imaging. Journal of Physical Chemistry Letters, 2022, 13(13): 2862–2870

[60]

Maddalena F , Xie A , Chin X Y , Begum R , Witkowski M E , Makowski M , Mahler B , Drozdowski W , Springham S V , Rawat R S , Mathews N , Dujardin C , Birowosuto M D , Dang C . Deterministic light yield, fast scintillation, and microcolumn structures in lead halide perovskite nanocrystals. Journal of Physical Chemistry C: Nanomaterials and Interfaces, 2021, 125(25): 14082–14088

[61]

Liu L , Li W , Pan W , Wei H , Yang B . Solvent co-assembly in lead-free perovskite scintillators for stable and large-area X-ray imaging. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(30): 15990–15998

[62]

Yao Q , Li J , Li X , Ma Y , Song H , Li Z , Wang Z , Tao X . Achieving a record scintillation performance by micro‐doping a heterovalent magnetic ion in Cs3Cu2I5 single‐crystal. Advanced Materials, 2023, 35(44): 2304938

[63]

Zhang M , Wang X , Yang B , Zhu J , Niu G , Wu H , Yin L , Du X , Niu M , Ge Y , Xie Q , Yan Y , Tang J . Metal halide scintillators with fast and self‐absorption‐free defect‐bound excitonic radioluminescence for dynamic X‐ray imaging. Advanced Functional Materials, 2021, 31(9): 2007921

[64]

Xu L , Lin X , He Q , Worku M , Ma B . Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide. Nature Communications, 2020, 11(1): 4329

[65]

Peng G , Qiu F , Li Z , Wang H , Li Q , Jin Z . Single‐source evaporated high‐quality single‐phase Cs3Cu2I5 scintillator films for high performance X‐ray imaging. Advanced Functional Materials, 2024, 34(39): 243052

[66]

Shao W , Zhu G , Wang X , Zhang Z , Lv H , Deng W , Zhang X , Liang H . Highly efficient, flexible, and eco-friendly manganese (II) halide nanocrystal membrane with low light scattering for high-resolution X-ray imaging. ACS Applied Materials & Interfaces, 2023, 15(1): 932–941

[67]

Li N , Xu Z , Wang P , Wu F , Liu L , Najar A , Liu Y , Yang Z , Liu S . Cs3Cu2I5 nanocrystals with near-unity photoluminescence quantum yield for stable and high-spatial-resolution X-ray imaging. ACS Applied Nano Materials, 2023, 6(13): 11472–11480

[68]

Zhou Y , Wang X , He T , Yang H , Yang C , Shao B , Gutiérrez-Arzaluz L , Bakr O M , Zhang Y , Mohammed O F . Large-area perovskite-related copper halide film for high-resolution flexible X-ray imaging scintillation screens. ACS Energy Letters, 2022, 7(2): 844–846

[69]

Karluk A A , Nematulloev S , Thomas S , Hasanov B E , Yorov K , Naphade R , Gutiérrez-Arzaluz L , Mohammad B , Abulikemu M , Mahmood J , Yavuz C T . Scalable synthesis of Sb-doped Rb3InCl6 nano-crystals for high-resolution X-ray imaging screen. Cell Reports Physical Science, 2025, 6(2): 102427

[70]

Wang Z , Wei Y , Liu C , Liu Y , Hong M . Mn2+-activated Cs3Cu2I5 nano-scintillators for ultra-high resolution flexible X-ray imaging. Laser & Photonics Reviews, 2023, 17(6): 2200851

[71]

Gu L , Yang Z , Cui J , Feng Z , Yao J , Song J . Achieving high loading capacity of perovskite nanocrystals in pore-reamed metal–organic frameworks for bright scintillators. ACS Nano, 2025, 19(16): 15803–15812

[72]

Sun R , Wang Z , Wang H , Chen Z , Yao Y , Zhang H , Gao Y , Hao X , Liu H , Zhang Y . Micrometer-resolution X-ray imaging enabled by a flexible perovskite screen. ACS Applied Materials & Interfaces, 2022, 14(32): 36801–36806

[73]

Wang Z , Sun R , Liu N , Fan H , Hu X , Shen D , Zhang Y , Liu H . X-ray imager of 26-µm resolution achieved by perovskite assembly. Nano Research, 2022, 15(3): 2399–2404

[74]

Ma W , Jiang T , Yang Z , Zhang H , Su Y , Chen Z , Chen X , Ma Y , Zhu W , Yu X , Zhu H , Qiu J , Liu X , Xu X , Yang Y M . Highly resolved and robust dynamic X‐ray imaging using perovskite glass‐ceramic scintillator with reduced light scattering. Advanced Science, 2021, 8(15): 2003728

[75]

Yang Z , Yao J , Xu L , Fan W , Song J . Designer bright and fast CsPbBr3 perovskite nanocrystal scintillators for high-speed X-ray imaging. Nature Communications, 2024, 15(1): 8870

[76]

Wang Q , Zhou Q , Nikl M , Xiao J , Kucerkova R , Beitlerova A , Babin V , Prusa P , Linhart V , Wang J , Wen X , Niu G , Tang J , Ren G , Wu Y . Highly resolved X‐ray imaging enabled by In(I) doped perovskite‐like Cs3Cu2I5 single crystal scintillator. Advanced Optical Materials, 2022, 10(11): 2200304

[77]

Chen M , Sun L , Ou X , Yang H , Liu X , Dong H , Hu W , Duan X . Organic semiconductor single crystals for X‐ray imaging. Advanced Materials, 2021, 33(43): 2104749

[78]

He Z L , Wei J H , Zhang Z Z , Luo J B , Kuang D B . Manganese‐halide single‐crystal scintillator toward high‐performance X‐ray detection and imaging: influences of halogen and thickness. Advanced Optical Materials, 2023, 11(18): 2300449

[79]

Zhang X , Shi Y , Wang X , Liu Y , Zhang Y . Flexible and transparent ceramic nanocomposite for laboratory X-ray imaging of micrometer resolution. ACS Nano, 2022, 16(12): 21576–21582

[80]

Chen W , Zhou M , Liu Y , Yu X , Pi C , Yang Z , Zhang H , Liu Z , Wang T , Qiu J , Yu S F , Yang Y M , Xu X . All‐inorganic perovskite polymer‐ceramics for flexible and refreshable X‐ray imaging. Advanced Functional Materials, 2022, 32(2): 2107424

[81]

Zhou W , Zhu X , Yu J , Mou D , Li H , Kong L , Lang T , Peng L , Chen W , Xu X , Liu B . High-quality Cs3Cu2I5@PMMA scintillator films assisted by multiprocessing for X-ray imaging. ACS Applied Materials & Interfaces, 2023, 15(32): 38741–38749

[82]

Jia B , Chu D , Li N , Zhang Y , Yang Z , Hu Y , Zhao Z , Feng J , Ren X , Zhang H , Zhao G , Sun H , Yuan N , Ding J , Liu Y , Liu S F . Airflow-controlled crystallization for a multi-inch 2D halide perovskite single-crystal scintillator for fast high-resolution X-ray imaging. ACS Energy Letters, 2023, 8(1): 590–599

[83]

Shen J , Jia R , Hu Y , Zhu W , Yang K , Li M , Zhao D , Shi J , Lian J . Cold-sintered all-inorganic perovskite bulk composite scintillators for efficient X-ray imaging. ACS Applied Materials & Interfaces, 2024, 16(19): 24703–24711

[84]

Wu X , Guo Z , Zhu S , Zhang B , Guo S , Dong X , Mei L , Liu R , Su C , Gu Z . Ultrathin, transparent, and high density perovskite scintillator film for high resolution X‐ray microscopic imaging. Advanced Science, 2022, 9(17): 2200831

[85]

Qiu F , Peng G , Xu Y , Wang H , Jin Z . Sequential vacuum evaporated copper metal halides for scalable, flexible, and dynamic X‐ray detection. Advanced Functional Materials, 2023, 33(36): 2303417

[86]

Jeong H Y , Lee J H , Lee S Y , Lee J , Cho S O . A transparent nano-polycrystalline ZnWO4 thin-film scintillator for high-resolution X-ray imaging. ACS Omega, 2021, 6(48): 33224–33230

[87]

Zhang M , Zhu J , Yang B , Niu G , Wu H , Zhao X , Yin L , Jin T , Liang X , Tang J . Oriented-structured CsCu2I3 film by close-space sublimation and nanoscale seed screening for high-resolution X-ray imaging. Nano Letters, 2021, 21(3): 1392–1399

[88]

Wu H , Wang Q , Zhang A , Niu G , Nikl M , Ming C , Zhu J , Zhou Z , Sun Y , Nan G , Ren G , Wu Y , Tang J . One-dimensional scintillator film with benign grain boundaries for high-resolution and fast X-ray imaging. Science Advances, 2023, 9(30): eadh1789

[89]

Svenonius O , Sahlholm A , Wiklund P , Linnros J . Performance of an X-ray imaging detector based on a structured scintillator. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 607(1): 138–140

[90]

Kim J , Kyoung Cha B , Hyung Bae J , Lee C , Kim H , Chang S , Cho G , Sim C , Kim T . Fabrication and characterization of pixelated Gd2O2S:Tb scintillator screens for digital X-ray imaging applications. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 633: S303–S305

[91]

Zhang Z , Dierks H , Lamers N , Sun C , Nováková K , Hetherington C , Scheblykin I G , Wallentin J . Single-cystalline perovskite nanowire arrays for stable X-ray scintillators with micrometer spatial resolution. ACS Applied Nano Materials, 2022, 5(1): 881–889

[92]

Zhao X , Jin T , Gao W , Niu G , Zhu J , Song B , Luo J , Pan W , Wu H , Zhang M , He X , Fu L , Li Z , Zhao H , Tang J . Embedding Cs3Cu2I5 scintillators into anodic aluminum oxide matrix for high‐resolution X‐ray imaging. Advanced Optical Materials, 2021, 9(24): 2101194

[93]

Song J , He Y , Hu H , Li M , Li C , Yang B , Wei H . Anti‐scattering perovskite scintillator arrays for high‐resolution computed tomography imaging. Advanced Materials, 2025, 37(9): 2417248

[94]

Hu M , Wang Y , Hu S , Wang Z , Du B , Peng Y , Yang J , Shi Y , Chen D , Chen X , Zhuang Z , Wang Z , Chen X , Yang J , Ge Y , Wang E , Wen Q , Xiao S , Ma M , Li W , Zhang J , Ning D , Wei L , Yang C , Chen M . A pixelated liquid perovskite array for high-sensitivity and high-resolution X-ray imaging scintillation screens. Nanoscale, 2023, 15(38): 15635–15642

[95]

Wang Z , Li S , Ren G , Yao S , Zhu D , Xie J , Zhou J , Xu X , Huang W , Kuai Y , Wan C M , Ye J , Xu X , Hu Z . Flexible and reabsorption-free perovskite scintillators for low-dose X-ray detection and high-resolution Imaging. ACS Photonics, 2024, 11(8): 3003–3011

[96]

Li X , Guo H , Li Y , Lin C , Xie L . Enhancing persistent radioluminescence in perovskite scintillators through trap defect modulation. Materials Chemistry Frontiers, 2024, 8(13): 2539–2548

[97]

Birowosuto M D , Cortecchia D , Drozdowski W , Brylew K , Lachmanski W , Bruno A , Soci C . X-ray scintillation in lead halide perovskite crystals. Scientific Reports, 2016, 6(1): 37254

[98]

Kawano N , Koshimizu M , Okada G , Fujimoto Y , Kawaguchi N , Yanagida T , Asai K . Scintillating organic‐inorganic layered perovskite-type compounds and the gamma-ray detection capabilities. Scientific Reports, 2017, 7(1): 14754

[99]

Mahato S , Makowski M , Bose S , Kowal D , Kuddus Sheikh M A , Braueninger-Wemer P , Witkowski M E , Ray S K , Drozdowski W , Birowosuto M D . Improvement of light output of MAPbBr3 single crystal for ultrafast and bright cryogenic scintillator. Journal of Physical Chemistry Letters, 2024, 15(14): 3713–3720

[100]

Lu L , Sun M , Lu Q , Wu T , Huang B . High energy X-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy. Nano Energy, 2021, 79: 105437

[101]

Anand A , Zaffalon M L , Erroi A , Cova F , Carulli F , Brovelli S . Advances in perovskite nanocrystals and nanocomposites for scintillation applications. ACS Energy Letters, 2024, 9(3): 1261–1287

[102]

Zaffalon M L , Cova F , Liu M , Cemmi A , Di Sarcina I , Rossi F , Carulli F , Erroi A , Rodà C , Perego J , Comotti A , Fasoli M , Meinardi F , Li L , Vedda A , Brovelli S . Extreme γ-ray radiation hardness and high scintillation yield in perovskite nanocrystals. Nature Photonics, 2022, 16(12): 860–868

[103]

Zhao Y , Zhou W , Zhou X , Liu K , Yu D , Zhao Q . Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light, Science & Applications, 2017, 6(5): e16243

[104]

Pan W , Wu H , Luo J , Deng Z , Ge C , Chen C , Jiang X , Yin W , Niu G , Zhu L , Yin L , Zhou Y , Xie Q , Ke X , Sui M , Tang J . Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726–732

[105]

Liang C , Li P , Gu H , Zhang Y , Li F , Song Y , Shao G , Mathews N , Xing G . One‐step inkjet printed perovskite in air for efficient light harvesting. Solar RRL, 2018, 2(2): 1700217

[106]

Zuo C , Scully A D , Vak D , Tan W , Jiao X , McNeill C R , Angmo D , Ding L , Gao M . Self‐assembled 2D perovskite layers for efficient printable solar cells. Advanced Energy Materials, 2019, 9(4): 1803258

RIGHTS & PERMISSIONS

Higher Education Press

PDF (5263KB)

286

Accesses

0

Citation

Detail

Sections
Recommended

/