Estimation-based disturbance adaptive model predictive control for wheeled biped robots

Haoyang YU , Xu LI , Zhenguo TAO , Shiqi GUAN , Haibo FENG , Songyuan ZHANG , Yili FU

Front. Mech. Eng. ›› 2025, Vol. 20 ›› Issue (6) : 41

PDF (3357KB)
Front. Mech. Eng. ›› 2025, Vol. 20 ›› Issue (6) : 41 DOI: 10.1007/s11465-025-0857-z
RESEARCH ARTICLE

Estimation-based disturbance adaptive model predictive control for wheeled biped robots

Author information +
History +
PDF (3357KB)

Abstract

Enhancing the motion performance of wheeled biped robots amidst uncertain disturbances remains a challenge due to their under-actuated and inherently unstable nature. Aiming to address this issue, this paper proposes a disturbance adaptive control framework for such robots. The framework introduces a disturbance variable to describe the comprehensive effect of disturbances due to environmental interactions on the robotic system. A Kalman filter is also employed to estimate the robot’s center of mass (CoM) state and the uncertain disturbances by leveraging the dynamic coupling intrinsic to the robots. Estimated results are then integrated into a nominal model predictive control framework to generate an optimal CoM trajectory over a finite time horizon. This approach enables the robot to adapt to various types of external disturbances in the sagittal plane while maintaining accurate velocity tracking. The efficacy of the proposed approach is validated by conducting experimental evaluations on a hydraulically driven wheeled biped robot.

Graphical abstract

Keywords

wheel-legged robot / adaptive model predictive control / disturbance estimation / Kalman filter

Cite this article

Download citation ▾
Haoyang YU, Xu LI, Zhenguo TAO, Shiqi GUAN, Haibo FENG, Songyuan ZHANG, Yili FU. Estimation-based disturbance adaptive model predictive control for wheeled biped robots. Front. Mech. Eng., 2025, 20(6): 41 DOI:10.1007/s11465-025-0857-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bjelonic M, Klemm V, Lee J, Hutter M. A survey of wheeled-legged robots. In: Cascalho J M, Tokhi M O, Silva M F, Mendes A, Goher K, Funk M (eds). Robotics in Natural Settings. Climbing and Walking Robots Conference (CLAWAR 2022). Lecture Notes in Networks and Systems, vol 530. Cham: Springer, 2022, 83–94

[2]

Klemm V, Morra A, Salzmann C, Tschopp F, Bodie K, Gulich L, Siegwart R. Ascento: A two-wheeled jumping robot. In: 2019 International Conference on Robotics and Automation (ICRA). Montreal: IEEE, 2019, 7515–7521

[3]

Lee J , Bjelonic M , Reske A , Wellhausen L , Miki T , Hutter M . Learning robust autonomous navigation and locomotion for wheeled-legged robots. Science Robotics, 2024, 9(89): eadi9641

[4]

Wang S K , Chen Z H , Li J H , Wang J Z , Li J , Zhao J B . Flexible motion framework of the six wheel-legged robot: Experimental results. IEEE/ASME Transactions on Mechatronics, 2022, 27(4): 2246–2257

[5]

Masuya K , Sugihara T . COM motion estimation of a biped robot based on kinodynamics and torque equilibrium. Advanced Robotics, 2016, 30(10): 691–703

[6]

Carpentier J, Benallegue M, Mansard N, Laumond J P. A kinematics-dynamics based estimator of the center of mass position for anthropomorphic system—a complementary filtering approach. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). Seoul: IEEE, 2015, 1121–1126

[7]

Morlando V , Teimoorzadeh A , Ruggiero F . Whole-body control with disturbance rejection through a momentum-based observer for quadruped robots. Mechanism and Machine Theory, 2021, 164: 104412

[8]

Duan Z K, Luo Z, Liu Y L, Wu Y Q, Chen W J. A faster and more robust momentum observer for robot collision detection based on loop shaping techniques. In: Yang H Y, Liu H H, Zou J, Yin Z P, Liu L Q, Ouyang X P, Wang Z Y (eds). Intelligent Robotics and Applications. International Conference on Intelligent Robotics and Applications (ICIRA) 2023. Lecture Notes in Computer Science, vol 14271. Singapore: Springer, 2023, 108–120

[9]

El Dine K M, Corrales-Ramon J A, Mezouar Y, Fauroux J C. A unified mobile manipulator control for on-line tip-over avoidance based on ZMP disturbance observer. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). Kuala Lumpur: IEEE, 2018, 1437–1443

[10]

Minniti M V , Grandia R , Farshidian F , Hutter M . Adaptive CLF-MPC with application to quadrupedal robots. IEEE Robotics and Automation Letters, 2022, 7(1): 565–572

[11]

Zhu Z G , Zhang G T , Sun Z K , Chen T , Rong X W , Xie A H , Li Y B . Proprioceptive-based whole-body disturbance rejection control for dynamic motions in legged robots. IEEE Robotics and Automation Letters, 2023, 8(11): 7703–7710

[12]

Zhao L X , Yu Z G , Han L Q , Chen X C , Qiu X J , Huang Q . Compliant motion control of wheel-legged humanoid robot on rough terrains. IEEE/ASME Transactions on Mechatronics, 2024, 29(3): 1949–1959

[13]

Klemm V , Morra A , Gulich L , Mannhart D , Rohr D , Kamel M , de Viragh Y , Siegwart R . LQR-assisted whole-body control of a wheeled bipedal robot with kinematic loops. IEEE Robotics and Automation Letters, 2020, 5(2): 3745–3752

[14]

Raza F, Owaki D, Hayashibe M. Modeling and control of a hybrid wheeled legged robot: Disturbance analysis. In: 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Boston: IEEE, 2020, 466–473

[15]

Xin Y X , Rong X W , Li Y B , Li B , Chai H . Movements and balance control of a wheel-leg robot based on uncertainty and disturbance estimation method. IEEE Access, 2019, 7: 133265–133273

[16]

Li Z J, Yang C G, Fan L P. Modeling of WIP Systems. In: Advanced Control of Wheeled Inverted Pendulum Systems. London: Springer, 2013, 37–54

[17]

Rigatos G , Busawon K , Pomares J , Abbaszadeh M . Nonlinear optimal control for the wheeled inverted pendulum system. Robotica, 2020, 38(1): 29–47

[18]

Hou M , Zhang X D , Chen D , Xu Z . Hierarchical sliding mode control combined with nonlinear disturbance observer for wheeled inverted pendulum robot trajectory tracking. Applied Sciences, 2023, 13(7): 4350

[19]

Jleilaty H A, Asmar D, Daher N. Model reference adaptive control of a two-wheeled mobile robot. In: 2019 International Conference on Robotics and Automation (ICRA). Montreal: IEEE, 2019, 1155–1161

[20]

Chen W H , Yang J , Guo L , Li S H . Disturbance-observer-based control and related methods—An overview. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1083–1095

[21]

Huang J , Zhang M S , Ri S , Xiong C H , Li Z J , Kang Y . High-order disturbance-observer-based sliding mode control for mobile wheeled inverted pendulum systems. IEEE Transactions on Industrial Electronics, 2020, 67(3): 2030–2041

[22]

Zafar M, Hutchinson S, Theodorou E A. Hierarchical optimization for whole-body control of wheeled inverted pendulum humanoids. In: 2019 International Conference on Robotics and Automation (ICRA). Montreal: IEEE, 2019, 7535–7542

[23]

Rakovic S V , Kouvaritakis B , Cannon M , Panos C , Findeisen R . Parameterized tube model predictive control. IEEE Transactions on Automatic Control, 2012, 57(11): 2746–2761

[24]

Sasfi A , Zeilinger M N , Köhler J . Robust adaptive MPC using control contraction metrics. Automatica, 2023, 155: 111169

[25]

Grandia R, Taylor A J, Singletary A, Hutter M, Ames A D. Nonlinear model predictive control of robotic systems with control Lyapunov functions. 2020, arXiv preprint arXiv:2006.01229

[26]

Tournois G, Focchi M, Del Prete A, Orsolino R, Caldwell D G, Semini C. Online payload identification for quadruped robots. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver: IEEE, 2017, 4889–4896

[27]

Sun Y , Ubellacker W L , Ma W L , Zhang X , Wang C H , Csomay-Shanklin N V , Tomizuka M , Sreenath K , Ames A D . Online learning of unknown dynamics for model-based controllers in legged locomotion. IEEE Robotics and Automation Letters, 2021, 6(4): 8442–8449

[28]

Bujarbaruah M , Zhang X J , Tanaskovic M , Borrelli F . Adaptive stochastic MPC under time-varying uncertainty. IEEE Transactions on Automatic Control, 2021, 66(6): 2840–2845

[29]

Nouwens S A N , Paulides M M , Heemels M . Constraint-adaptive MPC for linear systems: A system-theoretic framework for speeding up MPC through online constraint removal. Automatica, 2023, 157: 111243

[30]

Kajita S, Hirukawa H, Harada K, Yokoi K. Introduction to Humanoid Robotics. Heidelberg: Springer, 2014, 107–120

[31]

Carpentier J, Saurel G, Buondonno G, Mirabel J, Lamiraux F, Stasse O, Mansard N. The Pinocchio C++ library: A fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives. In: 2019 IEEE/SICE International Symposium on System Integration (SII). Paris: IEEE, 2019, 614–619

[32]

Stellato B , Banjac G , Goulart P , Bemporad A , Boyd S . OSQP: An operator splitting solver for quadratic programs. Mathematical Programming Computation, 2020, 12(4): 637–672

[33]

Zhou H T, Li X, Feng H B, Li J C, Zhang S Y, Fu Y L. Model decoupling and control of the wheeled humanoid robot moving in sagittal plane. In: 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids). Toronto: IEEE, 2019, 1–6

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3357KB)

Supplementary files

Supplementary materials

569

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/