Dimethicone-aided laser cutting of solar rolled glass

Wenyuan LI , Guojun ZHANG , Long CHEN , Yu HUANG , Youmin RONG , Zhangrui GAO

Front. Mech. Eng. ›› 2021, Vol. 16 ›› Issue (1) : 111 -121.

PDF (2595KB)
Front. Mech. Eng. ›› 2021, Vol. 16 ›› Issue (1) : 111 -121. DOI: 10.1007/s11465-020-0615-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Dimethicone-aided laser cutting of solar rolled glass

Author information +
History +
PDF (2595KB)

Abstract

Solar rolled glass, with one micro-structure surface and another roughness surface, can cause diffuse refraction of the focused laser spot, and this phenomenon restricts the application of laser manufacturing. In this study, laser cutting of solar rolled glass with a thickness of 2.5 mm was successfully achieved with the help of dimethicone to ensure laser focusing. Dimethicone was coated on the top surface of the rolled glass processing zone, and a Z bottom–up multilayer increment with the X–Y spiral line was applied to control the cutting path. Different viscosity values of dimethicone were considered. Results showed that surface quality increased as the viscosity increased until a certain threshold was reached; afterward, the surface quality decreased or directly caused the cutting to fail. The minimum surface roughness (3.26 µm) of the processed surface (chipping: Width≤113.64 µm, area 215199 µm2) was obtained when the dimethicone viscosity and laser pulse frequency were 1000 mm2/s and 43 kHz (power 25.4 W), respectively. The micro-defects on the processed surface were few, and the edge chipping width and depth of the laser processed surface were small.

Keywords

laser cutting / solar rolled glass / dimethicone / viscosity / surface quality

Cite this article

Download citation ▾
Wenyuan LI, Guojun ZHANG, Long CHEN, Yu HUANG, Youmin RONG, Zhangrui GAO. Dimethicone-aided laser cutting of solar rolled glass. Front. Mech. Eng., 2021, 16(1): 111-121 DOI:10.1007/s11465-020-0615-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kondrashov V I, Shitova L A, Litvinov V A, Characteristics of cutting parameters and their effect on the glass edge quality. Glass and Ceramics, 2001, 58(9–10): 303–305

[2]

Matsumura T, Hiramatsu T, Shirakashi T, A study on cutting force in the milling process of glass. Journal of Manufacturing Processes, 2005, 7(2): 102–108

[3]

Zhimalov A B, Solinov V F, Kondratenko V S, Laser cutting of float glass during production. Glass and Ceramics, 2006, 63(9–10): 319–321

[4]

Sharma A, Jain V, Gupta D. Characterization of chipping and tool wear during drilling of float glass using rotary ultrasonic machining. Measurement, 2018, 128: 254–263

[5]

Azmir M A, Ahsan A K. Study of abrasive water jet machining process on glass/epoxy composite laminate. Journal of Materials Processing Technology, 2009, 209(20): 6168–6173

[6]

Rong Y M, Huang Y, Lin C R, Stretchability improvement of flexiable electronics by laser micro-drilling array holes in PDMS film. Optics and Lasers in Engineering, 2020, 134: 106307

[7]

Lumley R M. Controlled separation of brittle materials using a laser. American Ceramic Society Bulletin, 1969, 48: 850–854

[8]

Zheng H Y, Lee T. Studies of CO2 laser peeling of glass substrates. Journal of Micromechanics and Microengineering, 2005, 15(11): 2093–2097

[9]

Shalupaev S, Shershnev E, Nikityuk Y V, Two-beam laser thermal cleavage of brittle nonmetallic materials. Journal of Optical Technology, 2006, 73(5): 356–359

[10]

Nisar S, Li L, Sheikh M A. Laser glass cutting techniques—A review. Journal of Laser Applications, 2013, 25(4): 042010

[11]

Tsai C H, Liou C S. Fracture mechanism of laser cutting with controlled fracture. Journal of Manufacturing Science and Engineering, 2003, 125(3): 519–528

[12]

Udrea M V, Alacakir A, Esendemir A, Small-power-pulsed and continuous longitudinal CO2 laser for material processing. Proceedings Volume 4068, SIOEL’99: Sixth Symposium on Optoelectronics, 2000, 4068: 657–662

[13]

Yang L J, Wang Y, Tian Z G, YAG laser cutting soda-lime glass with controlled fracture and volumetric heat absorption. International Journal of Machine Tools and Manufacture, 2010, 50(10): 849–859

[14]

Zhao C, Zhang H, Wang Y. Semiconductor laser asymmetry cutting glass with laser induced thermal-crack propagation. Optics and Lasers in Engineering, 2014, 63: 43–52

[15]

Deng L, Yang H, Zeng X, Study on mechanics and key technologies of laser nondestructive mirror-separation for KDP crystal. International Journal of Machine Tools and Manufacture, 2015, 94: 26–36

[16]

Kuo Y L, Lin J. Laser cleaving on glass sheets with multiple laser beams. Optics and Lasers in Engineering, 2008, 46(5): 388–395

[17]

Jiao J, Wang X. Cutting glass substrates with dual-laser beams. Optics and Lasers in Engineering, 2009, 47(7–8): 860–864

[18]

Zhao C, Zhang H, Yang L, Dual laser beam revising the separation path technology of laser induced thermal-crack propagation for asymmetric linear cutting glass. International Journal of Machine Tools and Manufacture, 2016, 106: 43–55

[19]

Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials. Nature Photonics, 2008, 2(4): 219–225

[20]

Shin H, Kim D. Cutting thin glass by femtosecond laser ablation. Optics & Laser Technology, 2018, 102: 1–11

[21]

Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media. Physics Reports, 2007, 441(2–4): 47–189

[22]

Amina J L, Ji L, Yan T, Ionization behavior and dynamics of picosecond laser filamentation in sapphire. Opto-Electronic Advances, 2019, 2(6): 190003

[23]

Xie X Z, Zhou C X, Wei X, Laser machining of transparent brittle materials: From machining strategies to applications. Opto-Electronic Advances, 2019, 2(1): 180017

[24]

Li Y, Liu H, Hong M. High-quality sapphire microprocessing by dual-beam laser induced plasma assisted ablation. Optics Express, 2020, 28(5): 6242–6250

[25]

Liu P, Deng L, Duan J, A study on laser multi-focus separation technology of thick KDP crystal. International Journal of Machine Tools and Manufacture, 2017, 118–119: 26–36

[26]

Liu P, Duan J, Wu B, A flexible multi-focus laser separation technology for thick glass. International Journal of Machine Tools and Manufacture, 2018, 135: 12–23

[27]

Feucht F, Ketelaer J, Wolff A, Latest machining technologies of hard-to-cut materials by ultrasonic machine tool. Procedia CIRP, 2014, 14: 148–152

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2595KB)

5012

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/