Micro-hydromechanical deep drawing of metal cups with hydraulic pressure effects

Liang LUO, Zhengyi JIANG, Dongbin WEI, Xiaogang WANG, Cunlong ZHOU, Qingxue HUANG

PDF(594 KB)
PDF(594 KB)
Front. Mech. Eng. ›› 2018, Vol. 13 ›› Issue (1) : 66-73. DOI: 10.1007/s11465-018-0468-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Micro-hydromechanical deep drawing of metal cups with hydraulic pressure effects

Author information +
History +

Abstract

Micro-metal products have recently enjoyed high demand. In addition, metal microforming has drawn increasing attention due to its net-forming capability, batch manufacturing potential, high product quality, and relatively low equipment cost. Micro-hydromechanical deep drawing (MHDD), a typical microforming method, has been developed to take advantage of hydraulic force. With reduced dimensions, the hydraulic pressure development changes; accordingly, the lubrication condition changes from the macroscale to the microscale. A Voronoi-based finite element model is proposed in this paper to consider the change in lubrication in MHDD according to open and closed lubricant pocket theory. Simulation results agree with experimental results concerning drawing force. Changes in friction significantly affect the drawing process and the drawn cups. Moreover, defined wrinkle indexes have been shown to have a complex relationship with hydraulic pressure. High hydraulic pressure can increase the maximum drawing ratio (drawn cup height), whereas the surface finish represented by the wear is not linearly dependent on the hydraulic pressure due to the wrinkles.

Keywords

micro-hydromechanical deep drawing / microforming / size effects / lubrication / Voronoi

Cite this article

Download citation ▾
Liang LUO, Zhengyi JIANG, Dongbin WEI, Xiaogang WANG, Cunlong ZHOU, Qingxue HUANG. Micro-hydromechanical deep drawing of metal cups with hydraulic pressure effects. Front. Mech. Eng., 2018, 13(1): 66‒73 https://doi.org/10.1007/s11465-018-0468-z

References

[1]
Goel P. MEMS non-silicon fabrication technologies. Sensors and Transducers, 2012, 139(4): 1–23
CrossRef Google scholar
[2]
Huff M. MEMS fabrication. Sensor Review, 2002, 22(1): 18–33
CrossRef Google scholar
[3]
Geiger M, Kleiner  M, Eckstein R, . Microforming. CIRP Annals-Manufacturing Technology, 2001, 50(2): 445–462 
CrossRef Google scholar
[4]
Tiesler N, Engel  U. Microforming—Effects of miniaturization. In: Proceedings of the 8th International Conference on Metal Forming. Rotterdam: A. A. Balkema, 2000, 355–360
[5]
Vollertsen F, Hu  Z, Niehoff H S, . State of the art in micro forming and investigations into micro deep drawing. Journal of Materials Processing Technology, 2004, 151(1–3): 70–79 d
CrossRef Google scholar
[6]
Deng J H, Fu  M W, Chan  W L. Size effect on material surface deformation behavior in micro-forming process. Materials Science and Engineering: A, 2011, 528(13–14): 4799–4806
CrossRef Google scholar
[7]
Molotnikov A, Lapovok  R, Gu C F, . Size effects in micro cup drawing. Materials Science and Engineering: A, 2012, 550: 312–319 
CrossRef Google scholar
[8]
Vollertsen F. Size effects in micro forming. Key Engineering Materials, 2011, 473: 3–12
[9]
Sato H, Manabe  K, Furushima T, . On the scale dependence of micro hydromechanical deep drawing. Key Engineering Materials, 2017, 725: 689–694
[10]
Wang C, Guo  B, Shan D, . Tribological behaviors in microforming considering microscopically trapped lubricant at contact interface. International Journal of Advanced Manufacturing Technology, 2014, 71(9–12): 2083–2090 
CrossRef Google scholar
[11]
Sato H, Manabe  K, Wei D, . Tribological behavior in micro-sheet hydroforming. Tribology International, 2016, 97: 302–312
CrossRef Google scholar
[12]
Wang X, Cao  J. On the prediction of side-wall wrinkling in sheet metal forming processes. International Journal of Mechanical Sciences, 2000, 42(12): 2369–2394 
CrossRef Google scholar
[13]
Wang X, Cao  J. An analytical prediction of flange wrinkling in sheet metal forming. Journal of Manufacturing Processes, 2000, 2(2): 100–107 
CrossRef Google scholar

Acknowledgements

The first author is grateful for the financial support given by the Chinese Scholarship Council (CSC 201206160011) and for the international postgraduate tuition award offered by the University of Wollongong. The authors would also like to thank the Australian Research Council for their financial support. This study was also supported by the invitation fellowship program of the Japan Society for the Promotion of Science (Z. Y. Jiang).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(594 KB)

Accesses

Citations

Detail

Sections
Recommended

/