Micro-hydromechanical deep drawing of metal cups with hydraulic pressure effects

Liang LUO , Zhengyi JIANG , Dongbin WEI , Xiaogang WANG , Cunlong ZHOU , Qingxue HUANG

Front. Mech. Eng. ›› 2018, Vol. 13 ›› Issue (1) : 66 -73.

PDF (594KB)
Front. Mech. Eng. ›› 2018, Vol. 13 ›› Issue (1) : 66 -73. DOI: 10.1007/s11465-018-0468-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Micro-hydromechanical deep drawing of metal cups with hydraulic pressure effects

Author information +
History +
PDF (594KB)

Abstract

Micro-metal products have recently enjoyed high demand. In addition, metal microforming has drawn increasing attention due to its net-forming capability, batch manufacturing potential, high product quality, and relatively low equipment cost. Micro-hydromechanical deep drawing (MHDD), a typical microforming method, has been developed to take advantage of hydraulic force. With reduced dimensions, the hydraulic pressure development changes; accordingly, the lubrication condition changes from the macroscale to the microscale. A Voronoi-based finite element model is proposed in this paper to consider the change in lubrication in MHDD according to open and closed lubricant pocket theory. Simulation results agree with experimental results concerning drawing force. Changes in friction significantly affect the drawing process and the drawn cups. Moreover, defined wrinkle indexes have been shown to have a complex relationship with hydraulic pressure. High hydraulic pressure can increase the maximum drawing ratio (drawn cup height), whereas the surface finish represented by the wear is not linearly dependent on the hydraulic pressure due to the wrinkles.

Keywords

micro-hydromechanical deep drawing / microforming / size effects / lubrication / Voronoi

Cite this article

Download citation ▾
Liang LUO, Zhengyi JIANG, Dongbin WEI, Xiaogang WANG, Cunlong ZHOU, Qingxue HUANG. Micro-hydromechanical deep drawing of metal cups with hydraulic pressure effects. Front. Mech. Eng., 2018, 13(1): 66-73 DOI:10.1007/s11465-018-0468-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goel P. MEMS non-silicon fabrication technologies. Sensors and Transducers2012139(4): 1–23

[2]

Huff M. MEMS fabrication. Sensor Review200222(1): 18–33

[3]

Geiger MKleiner  MEckstein R. Microforming. CIRP Annals-Manufacturing Technology200150(2): 445–462 

[4]

Tiesler NEngel  U. Microforming—Effects of miniaturization. In: Proceedings of the 8th International Conference on Metal Forming. Rotterdam: A. A. Balkema2000, 355–360

[5]

Vollertsen FHu  ZNiehoff H S. State of the art in micro forming and investigations into micro deep drawing. Journal of Materials Processing Technology2004151(1–3): 70–79 d

[6]

Deng J HFu  M WChan  W L. Size effect on material surface deformation behavior in micro-forming process. Materials Science and Engineering: A2011528(13–14): 4799–4806

[7]

Molotnikov ALapovok  RGu C F. Size effects in micro cup drawing. Materials Science and Engineering: A2012550: 312–319 

[8]

Vollertsen F. Size effects in micro forming. Key Engineering Materials2011473: 3–12

[9]

Sato HManabe  KFurushima T. On the scale dependence of micro hydromechanical deep drawing. Key Engineering Materials2017, 725: 689–694

[10]

Wang CGuo  BShan D. Tribological behaviors in microforming considering microscopically trapped lubricant at contact interface. International Journal of Advanced Manufacturing Technology201471(9–12): 2083–2090 

[11]

Sato HManabe  KWei D. Tribological behavior in micro-sheet hydroforming. Tribology International201697: 302–312

[12]

Wang XCao  J. On the prediction of side-wall wrinkling in sheet metal forming processes. International Journal of Mechanical Sciences200042(12): 2369–2394 

[13]

Wang XCao  J. An analytical prediction of flange wrinkling in sheet metal forming. Journal of Manufacturing Processes20002(2): 100–107 

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (594KB)

2725

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/