Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

Hamed HABIBI, Hamed RAHIMI NOHOOJI, Ian HOWARD

PDF(412 KB)
PDF(412 KB)
Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (3) : 377-388. DOI: 10.1007/s11465-017-0431-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

Author information +
History +

Abstract

Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.

Keywords

wind turbine nonlinear model / maximum power tracking / passive fault tolerant control / adaptive neural control

Cite this article

Download citation ▾
Hamed HABIBI, Hamed RAHIMI NOHOOJI, Ian HOWARD. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control. Front. Mech. Eng., 2017, 12(3): 377‒388 https://doi.org/10.1007/s11465-017-0431-4

References

[1]
Spudić V, Jelavić M, Baotić M. Supervisory controller for reduction of wind turbine loads in curtailed operation. Control Engineering Practice, 2015, 36: 72–86
CrossRef Google scholar
[2]
Bianchi F D, De Battista H, Mantz R J. Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design.London: Springer Science & Business Media, 2006
[3]
Kamal E, Aitouche A, Abbes D. Robust fuzzy scheduler fault tolerant control of wind energy systems subject to sensor and actuator faults. International Journal of Electrical Power & Energy Systems, 2014, 55: 402–419
CrossRef Google scholar
[4]
Njiri J G, Söffker D. State-of-the-art in wind turbine control: Trends and challenges. Renewable & Sustainable Energy Reviews, 2016, 60: 377–393
CrossRef Google scholar
[5]
Yu X, Jiang J. A survey of fault-tolerant controllers based on safety-related issues. Annual Reviews in Control, 2015, 39: 46–57
CrossRef Google scholar
[6]
Kandukuri S T, Klausen A, Karimi H R, A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management. Renewable & Sustainable Energy Reviews, 2016, 53: 697–708
CrossRef Google scholar
[7]
Gao Z, Cecati C, Ding S X. A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757–3767
CrossRef Google scholar
[8]
Gao Z, Cecati C, Ding S X. A Survey of fault diagnosis and fault-tolerant techniques—Part II: Fault diagnosis with knowledge-based and hybrid/active approaches. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3768–3774
CrossRef Google scholar
[9]
Odgaard P F, Stoustrup J. A benchmark evaluation of fault tolerant wind turbine control concepts. IEEE Transactions on Control Systems Technology, 2015, 23(3): 1221–1228
CrossRef Google scholar
[10]
Vidal Y, Tutivén C, Rodellar J, Fault diagnosis and fault-tolerant control of wind turbines via a discrete time controller with a disturbance compensator. Energies, 2015, 8(5): 4300–4316
CrossRef Google scholar
[11]
Blanke M, Kinnaert M, Lunze J, Diagnosis and Fault-Tolerant Control. 2nd ed.New York: Springer, 2006
[12]
Odgaard P F, Stoustrup J, Kinnaert M. Fault-tolerant control of wind turbines: A benchmark model. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1168–1182
CrossRef Google scholar
[13]
Habibi H, Koma A Y, Sharifian A. Power and velocity control of wind turbines by adaptive fuzzy controller during full load operation. Iranian Journal of Fuzzy Systems, 2016, 13(3): 35–48
[14]
Sloth C, Esbensen T, Stoustrup J. Active and passive fault-tolerant LPV control of wind turbines. In: Proceedings of American Control Conference (ACC). 2010, 2010, 4640–4646
CrossRef Google scholar
[15]
Esbensen T, Jensen B, Niss M, Joint Power and Speed Control of Wind Turbines. Aalborg University, Project Report 08gr830. 2008
[16]
Johnson K E, Fingersh L J, Balas M J, Methods for increasing Region 2 power capture on a variable-speed wind turbine. Journal of Solar Energy Engineering, 2004, 126(4): 1092–1100
CrossRef Google scholar
[17]
Iyasere E, Salah M, Dawson D, Optimum seeking-based nonlinear controller to maximise energy capture in a variable speed wind turbine. IET Control Theory & Applications, 2012, 6(4): 526–532
CrossRef Google scholar
[18]
Boukhezzar B, Siguerdidjane H, Hand M M. Nonlinear control of variable-speed wind turbines for generator torque limiting and power optimization. Journal of Solar Energy Engineering, 2006, 128(4): 516–530
CrossRef Google scholar
[19]
Østergaard K Z, Brath P, Stoustrup J. Estimation of effective wind speed. Journal of Physics: Conference Series, 2007, 75(1): 012082
CrossRef Google scholar
[20]
Johnson K E, Pao L Y, Balas M J, Control of variable-speed wind turbines: Standard and adaptive techniques for maximizing energy capture. IEEE Control Systems, 2006, 26(3): 70–81
CrossRef Google scholar
[21]
Li S, Wang H, Tian Y, A RBF neural network based MPPT method for variable speed wind turbine system. IFAC-PapersOnLine, 2015, 48(21): 244–250
CrossRef Google scholar
[22]
Odgaard P F, Stoustrup J. A benchmark evaluation of fault tolerant wind turbine control concepts. IEEE Transactions on Control Systems Technology, 2015, 23(3): 1221–1228
CrossRef Google scholar
[23]
Odgaard P F, Stoustrup J. An evaluation of fault tolerant wind turbine control schemes applied to a benchmark model. In: Proceedings of IEEE Conference on Control Applications (CCA). IEEE, 2014, 1366–1371
[24]
Odgaard P F, Stoustrup J, Nielsen R, Observer based detection of sensor faults in wind turbines. In: Proceedings of European Wind Energy Conference. 2009, 4421–4430 
CrossRef Google scholar
[25]
Tabatabaeipour S M, Odgaard P F, Bak T, Fault detection of wind turbines with uncertain parameters: A set-membership approach. Energies, 2012, 5(12): 2424–2448
CrossRef Google scholar
[26]
Badihi H, Zhang Y, Hong H. Fuzzy gain-scheduled active fault-tolerant control of a wind turbine. Journal of the Franklin Institute, 2014, 351(7): 3677–3706
CrossRef Google scholar
[27]
Sloth C, Esbensen T, Stoustrup J. Robust and fault-tolerant linear parameter-varying control of wind turbines. Mechatronics, 2011, 21(4): 645–659
CrossRef Google scholar
[28]
Boukhezzar B, Siguerdidjane H. Comparison between linear and nonlinear control strategies for variable speed wind turbines. Control Engineering Practice, 2010, 18(12): 1357–1368
CrossRef Google scholar
[29]
Tang C, Guo Y, Jiang J. Nonlinear dual-mode control of variable-speed wind turbines with doubly fed induction generators. IEEE Transactions on Control Systems Technology, 2011, 19(4): 744–756
CrossRef Google scholar
[30]
Boukhezzar B, Siguerdidjane H. Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Conversion and Management, 2009, 50(4): 885–892
CrossRef Google scholar
[31]
Civelek Z, Lüy M, Çam E, Control of pitch angle of wind turbine by fuzzy PID controller. Intelligent Automation & Soft Computing, 2016, 22(3): 463–471
CrossRef Google scholar
[32]
Van T L, Nguyen T H, Lee D C. Advanced pitch angle control based on fuzzy logic for variable-speed wind turbine systems. IEEE Transactions on Energy Conversion, 2015, 30(2): 578–587
CrossRef Google scholar
[33]
Han B, Zhou L, Yang F, Individual pitch controller based on fuzzy logic control for wind turbine load mitigation. IET Renewable Power Generation, 2016, 10(5): 687–693
CrossRef Google scholar
[34]
Medjber A, Guessoum A, Belmili H, New neural network and fuzzy logic controllers to monitor maximum power for wind energy conversion system. Energy, 2016, 106: 137–146
CrossRef Google scholar
[35]
Assareh E, Biglari M. A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm. Renewable & Sustainable Energy Reviews, 2015, 51: 1023–1037
CrossRef Google scholar
[36]
Heier S. Grid Integration of Wind Energy Conversion Systems.New York: John Wiley & Sons, Inc., 1998
[37]
Wang H, Pintea A, Christov N, Modelling and recursive power control of horizontal variable speed wind turbines. Journal of Control Engineering and Applied Informatics, 2012, 14(4): 33–41
[38]
Hand M, Johnson K, Fingersh L, Advanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory. National Renewable Energy Laboratory Report, NREL/CP-500-36118. 2004
[39]
Esbensen T, Sloth C. Fault diagnosis and fault-tolerant control of wind turbines. Dissertation for the Master’s Degree. Aalborg: Aalborg University, 2009
[40]
Hammerum K. A fatigue approach to wind turbine control. Technical University of Denmark, DK-2800 Kgs. Lyngby, 2006
[41]
Isermann R. Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. New York: Springer Science & Business Media, 2006
[42]
Kamal E, Aitouche A. Robust fault tolerant control of DFIG wind energy systems with unknown inputs. Renewable Energy, 2013, 56: 2–15
CrossRef Google scholar
[43]
Ge S S, Wang C. Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Transactions on Neural Networks, 2004, 15(3): 674–692
CrossRef Google scholar
[44]
Yu H, Xie T, Paszczynski S, Advantages of radial basis function networks for dynamic system design. IEEE Transactions on Industrial Electronics, 2011, 58(12): 5438–5450
CrossRef Google scholar
[45]
Liu J. Radial Basis Function (RBF) Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation.New York: Springer Science & Business Media, 2013
[46]
Polycarpou M M,Ioannou P A.A robust adaptive nonlinear control design. Automatica, 1996, 32(3): 423–427
CrossRef Google scholar
[47]
Rahimi H N, Nazemizadeh M. Dynamic analysis and intelligent control techniques for flexible manipulators: A review. Advanced Robotics, 2013, 28(2): 63–76
CrossRef Google scholar
[48]
Slotine J J E, Li W. Applied Nonlinear Control. Englewood Cliffs: Prentice-Hall, 1991

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(412 KB)

Accesses

Citations

Detail

Sections
Recommended

/