Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

Hamed HABIBI , Hamed RAHIMI NOHOOJI , Ian HOWARD

Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (3) : 377 -388.

PDF (412KB)
Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (3) : 377 -388. DOI: 10.1007/s11465-017-0431-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

Author information +
History +
PDF (412KB)

Abstract

Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.

Keywords

wind turbine nonlinear model / maximum power tracking / passive fault tolerant control / adaptive neural control

Cite this article

Download citation ▾
Hamed HABIBI, Hamed RAHIMI NOHOOJI, Ian HOWARD. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control. Front. Mech. Eng., 2017, 12(3): 377-388 DOI:10.1007/s11465-017-0431-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Spudić VJelavić MBaotić M. Supervisory controller for reduction of wind turbine loads in curtailed operation. Control Engineering Practice201536: 72–86

[2]

Bianchi F DDe Battista HMantz R J. Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design.London: Springer Science & Business Media, 2006

[3]

Kamal EAitouche AAbbes D. Robust fuzzy scheduler fault tolerant control of wind energy systems subject to sensor and actuator faults. International Journal of Electrical Power & Energy Systems201455: 402–419

[4]

Njiri J GSöffker D. State-of-the-art in wind turbine control: Trends and challenges. Renewable & Sustainable Energy Reviews201660: 377–393

[5]

Yu XJiang J. A survey of fault-tolerant controllers based on safety-related issues. Annual Reviews in Control201539: 46–57

[6]

Kandukuri S TKlausen AKarimi H RA review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management. Renewable & Sustainable Energy Reviews201653: 697–708

[7]

Gao ZCecati CDing S X. A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Transactions on Industrial Electronics201562(6): 3757–3767

[8]

Gao ZCecati CDing S X. A Survey of fault diagnosis and fault-tolerant techniques—Part II: Fault diagnosis with knowledge-based and hybrid/active approaches. IEEE Transactions on Industrial Electronics201562(6): 3768–3774

[9]

Odgaard P FStoustrup J. A benchmark evaluation of fault tolerant wind turbine control concepts. IEEE Transactions on Control Systems Technology201523(3): 1221–1228

[10]

Vidal YTutivén CRodellar JFault diagnosis and fault-tolerant control of wind turbines via a discrete time controller with a disturbance compensator. Energies20158(5): 4300–4316

[11]

Blanke MKinnaert MLunze JDiagnosis and Fault-Tolerant Control. 2nd ed.New York: Springer, 2006

[12]

Odgaard P FStoustrup JKinnaert M. Fault-tolerant control of wind turbines: A benchmark model. IEEE Transactions on Control Systems Technology201321(4): 1168–1182

[13]

Habibi HKoma A YSharifian A. Power and velocity control of wind turbines by adaptive fuzzy controller during full load operation. Iranian Journal of Fuzzy Systems201613(3): 35–48

[14]

Sloth CEsbensen TStoustrup J. Active and passive fault-tolerant LPV control of wind turbines. In: Proceedings of American Control Conference (ACC)20102010, 4640–4646

[15]

Esbensen TJensen BNiss MJoint Power and Speed Control of Wind Turbines. Aalborg University, Project Report 08gr8302008

[16]

Johnson K EFingersh L JBalas M JMethods for increasing Region 2 power capture on a variable-speed wind turbine. Journal of Solar Energy Engineering2004126(4): 1092–1100

[17]

Iyasere ESalah MDawson DOptimum seeking-based nonlinear controller to maximise energy capture in a variable speed wind turbine. IET Control Theory & Applications20126(4): 526–532

[18]

Boukhezzar BSiguerdidjane HHand M M. Nonlinear control of variable-speed wind turbines for generator torque limiting and power optimization. Journal of Solar Energy Engineering2006128(4): 516–530

[19]

Østergaard K ZBrath PStoustrup J. Estimation of effective wind speed. Journal of Physics: Conference Series200775(1): 012082

[20]

Johnson K EPao L YBalas M JControl of variable-speed wind turbines: Standard and adaptive techniques for maximizing energy capture. IEEE Control Systems200626(3): 70–81

[21]

Li SWang HTian YA RBF neural network based MPPT method for variable speed wind turbine system. IFAC-PapersOnLine201548(21): 244–250

[22]

Odgaard P FStoustrup J. A benchmark evaluation of fault tolerant wind turbine control concepts. IEEE Transactions on Control Systems Technology201523(3): 1221–1228

[23]

Odgaard P FStoustrup J. An evaluation of fault tolerant wind turbine control schemes applied to a benchmark model. In: Proceedings of IEEE Conference on Control Applications (CCA). IEEE2014, 1366–1371

[24]

Odgaard P FStoustrup JNielsen RObserver based detection of sensor faults in wind turbines. In: Proceedings of European Wind Energy Conference2009, 4421–4430 

[25]

Tabatabaeipour S MOdgaard P FBak TFault detection of wind turbines with uncertain parameters: A set-membership approach. Energies20125(12): 2424–2448

[26]

Badihi HZhang YHong H. Fuzzy gain-scheduled active fault-tolerant control of a wind turbine. Journal of the Franklin Institute2014351(7): 3677–3706

[27]

Sloth CEsbensen TStoustrup J. Robust and fault-tolerant linear parameter-varying control of wind turbines. Mechatronics201121(4): 645–659

[28]

Boukhezzar BSiguerdidjane H. Comparison between linear and nonlinear control strategies for variable speed wind turbines. Control Engineering Practice201018(12): 1357–1368

[29]

Tang CGuo YJiang J. Nonlinear dual-mode control of variable-speed wind turbines with doubly fed induction generators. IEEE Transactions on Control Systems Technology201119(4): 744–756

[30]

Boukhezzar BSiguerdidjane H. Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Conversion and Management200950(4): 885–892

[31]

Civelek ZLüy MÇam EControl of pitch angle of wind turbine by fuzzy PID controller. Intelligent Automation & Soft Computing201622(3): 463–471

[32]

Van T LNguyen T HLee D C. Advanced pitch angle control based on fuzzy logic for variable-speed wind turbine systems. IEEE Transactions on Energy Conversion201530(2): 578–587

[33]

Han BZhou LYang FIndividual pitch controller based on fuzzy logic control for wind turbine load mitigation. IET Renewable Power Generation201610(5): 687–693

[34]

Medjber AGuessoum ABelmili HNew neural network and fuzzy logic controllers to monitor maximum power for wind energy conversion system. Energy2016106: 137–146

[35]

Assareh EBiglari M. A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm. Renewable & Sustainable Energy Reviews201551: 1023–1037

[36]

Heier S. Grid Integration of Wind Energy Conversion Systems.New York: John Wiley & Sons, Inc., 1998

[37]

Wang HPintea AChristov NModelling and recursive power control of horizontal variable speed wind turbines. Journal of Control Engineering and Applied Informatics201214(4): 33–41

[38]

Hand MJohnson KFingersh LAdvanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory. National Renewable Energy Laboratory Report, NREL/CP-500-361182004

[39]

Esbensen TSloth C. Fault diagnosis and fault-tolerant control of wind turbines. Dissertation for the Master’s Degree. Aalborg: Aalborg University2009

[40]

Hammerum K. A fatigue approach to wind turbine control. Technical University of Denmark, DK-2800 Kgs. Lyngby2006

[41]

Isermann R. Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. New York: Springer Science & Business Media, 2006

[42]

Kamal EAitouche A. Robust fault tolerant control of DFIG wind energy systems with unknown inputs. Renewable Energy201356: 2–15

[43]

Ge S SWang C. Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Transactions on Neural Networks200415(3): 674–692

[44]

Yu HXie TPaszczynski SAdvantages of radial basis function networks for dynamic system design. IEEE Transactions on Industrial Electronics201158(12): 5438–5450

[45]

Liu J. Radial Basis Function (RBF) Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation.New York: Springer Science & Business Media, 2013

[46]

Polycarpou M M,Ioannou P A.A robust adaptive nonlinear control design. Automatica199632(3): 423–427

[47]

Rahimi H NNazemizadeh M. Dynamic analysis and intelligent control techniques for flexible manipulators: A review. Advanced Robotics201328(2): 63–76

[48]

Slotine J J ELi W. Applied Nonlinear Control. Englewood Cliffs: Prentice-Hall1991

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (412KB)

2614

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/