Simulation of abrasive flow machining process for 2D and 3D mixture models

Rupalika DASH, Kalipada MAITY

PDF(1767 KB)
PDF(1767 KB)
Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (4) : 424-432. DOI: 10.1007/s11465-015-0366-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Simulation of abrasive flow machining process for 2D and 3D mixture models

Author information +
History +

Abstract

Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a Newtonian fluid and the flow laminar with no wall slip.

Keywords

abrasive flow machining (AFM) / computational fluid dynamics (CFD) modeling / mixture model

Cite this article

Download citation ▾
Rupalika DASH, Kalipada MAITY. Simulation of abrasive flow machining process for 2D and 3D mixture models. Front. Mech. Eng., 2015, 10(4): 424‒432 https://doi.org/10.1007/s11465-015-0366-6

References

[1]
Tzeng H Y, Yan B, Hsu T, . Self-modulating abrasive medium and its application to abrasive flow machining for finishing micro channel surfaces. International Journal of Advanced Manufacturing Technology, 2007, 32(11–12): 1163–1169 
CrossRef Google scholar
[2]
Gorana V K, Jain V K, Lal G K. Prediction of surface roughness during abrasive flow machining. International Journal of Advanced Manufacturing Technology, 2006, 31(3–4): 258–267
CrossRef Google scholar
[3]
Wang A, Liang K, Liu C, . High precision polishing method in 3-D surface and elastic abrasive gel development. In: Proceedings of 4th Asia Pacific Forum on Precision Surface Finishing and Deburring Technology. Taichung: Metal Industries Research & Development Centre, 2005, 123–128
[4]
Tom K. Advanced abrasive flow technologies. In: Proceedings of 4th Asia Pacific Forum on Precision Surface Finishing and Deburring Technology. Taichung: Metal Industries Research & Development Centre, 2005, 129–138
[5]
Jain V K, Adsul S G. Experimental investigations into abrasive flow machining (AFM). International Journal of Machine Tools & Manufacture, 2000, 40(7): 1003–1021 
CrossRef Google scholar
[6]
Gorana V K, Jain V K, Lal G K. Experimental investigation into cutting force and active grain density during abrasive flow machining. International Journal of Machine Tools & Manufacture, 2004, 44(2–3): 201–211
CrossRef Google scholar
[7]
Jain R K, Jain V K, Kalra P K. Modeling of abrasive flow machining process: A neural network approach. Wear, 1999, 231(2): 242–248
CrossRef Google scholar
[8]
Jain R K, Jain V K, Dixit P M. Modeling of material removal and surface roughness in abrasive flow machining process. International Journal of Machine Tools & Manufacture, 1999, 39(12): 1903–1923
CrossRef Google scholar
[9]
Kumar Jain R, Jain V K. Simulation of surface generated in abrasive flow machining process. Robotics and Computer-integrated Manufacturing, 1999, 15(5): 403–412 doi:10.1016/S0736-5845(99)00046-0
[10]
Kenda J, Pusavec F, Kermouche G, . Surface Integrity in abrasive flow machining of hardened tool steel AISI D2. In: Proceedings of 1st CIRP Conference on Surface Integrity (CSI). Procedia Engineering, 2011, 19: 172–177
CrossRef Google scholar
[11]
Gorana V K, Jain V K, Lal G K. Forces prediction during material deformation in abrasive flow machining. Wear, 2006, 260(1–2): 128–139
CrossRef Google scholar
[12]
Rabinowicz E, Dunn L A, Russell P G. A study of abrasive wear under three body conditions. Wear, 1961, 4(5): 345–355
CrossRef Google scholar
[13]
Fang L, Zhao J, Sun K, et al. Temperature as sensitive monitor for efficiency of work in abrasive flow machining. Wear, 2009, 266(7–8): 678–687
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1767 KB)

Accesses

Citations

Detail

Sections
Recommended

/