REVIEW

NADPH oxidase and reactive oxygen species as signaling molecules in carcinogenesis

  • Gang WANG
Expand
  • Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA

Received date: 17 Oct 2008

Accepted date: 29 Oct 2008

Published date: 05 Mar 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Reactive oxygen species (ROS) are small molecule metabolites of oxygen that are prone to participate in redox reactions via their high reactivity. Intracellular ROS could be generated in reduced nicotinamide-adenine dinucleotidephosphate (NADPH) oxidase-dependent and/or NADPH oxidase-independent manners. Physiologically, ROS are involved in many signaling cascades that contribute to normal processes. One classical example is that ROS derived from the NADPH oxidase and released in neurotrophils are able to digest invading bacteria. Excessive ROS, however, contribute to pathogenesis of various human diseases including cancer, aging, dimentia and hypertension. As signaling messengers, ROS are able to oxidize many targets such as DNA, proteins and lipids, which may be linked with tumor growth, invasion or metastasis. The present review summarizes recent advances in our comprehensive understanding of ROS-linked signaling pathways in regulation of tumor growth, invasion and metastasis, and focuses on the role of the NADPH oxidase-derived ROS in cancer pathogenesis.

Cite this article

Gang WANG . NADPH oxidase and reactive oxygen species as signaling molecules in carcinogenesis[J]. Frontiers of Medicine, 2009 , 3(1) : 1 -7 . DOI: 10.1007/s11684-009-0018-5

1
LambethJ D. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol, 2004, 4(3): 181-189

DOI

2
WangG. In: Schwab M, eds. Encyclopedia of Cancer: Reactive oxygen species. 2nd ed. Berlin, Heidelberg, New York: Springer-Verlag. 2008,2559-2562

3
KanofskyJ R. Singlet oxygen production by biological systems. Chem Biol Interact, 1989, 70(1--2): 1-28

DOI

4
QuinnM T, AmmonsM C, DeLeoF R. The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction. Clin Sci, 2006, 111(1): 1-20

DOI

5
HordijkP L. Regulation of NADPH oxidases: the role of Rac proteins. Circ Res, 2006, 98 (4): 453-463

DOI

6
DoladoI, SwatA, AjenjoN, De VitaG, CuadradoA, NebredaA R. p38α MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell, 2007, 11(2): 191-205

DOI

7
KomatsuD, KatoM, NakayamaJ, MiyagawaS, KamataT. NADPH oxidase 1 plays a critical mediating role in oncogenic Ras-induced vascular endothelial growth factor expression. Oncogene, 2008, 27(34): 4724-4732

DOI

8
NakamuraH, NakamuraK, YodoiJ. Redox regulation of cellular activation. Ann Rev Immunol, 1997, 15: 351-369

DOI

9
ValkoM, RhodesC J, MoncolJ, IzakovicM, MazurM. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact, 2006, 160(1): 1-40

DOI

10
WuW S. The signaling mechanism of ROS in tumor progression. Cancer Metast Rev, 2006, 25(4): 695-705

DOI

11
XiaC, MengQ, LiuL Z, RojanasakulY, WangX R, JiangB H. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res, 2007, 67(22): 10823-10830

DOI

12
BrarS S, CorbinZ, KennedyT P, HemendingerR, ThorntonL, BommariusB, ArnoldR S, WhortonA R, SturrockA B, HuecksteadtT P, QuinnM T, KrenitskyK, ArdieK G, LambethJ D, HoidalJ R. NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. Am J Physiol Cell Physiol, 2003, 285(2): c353-369

13
BrarS S, KennedyT P, SturrockA B, HuecksteadtT P, QuinnM T, WhortonA R, HoidalJ R. An NAD(P)H oxidase regulates growth and transcription in melanoma cells. Am J Physiol Cell Physiol, 2002, 282(6): c1212-1224

14
OhshimaH, TatemichiM. In: Vainio H U, Hietanen E K, eds. Infections, inflammation and cancer: roles of reactive oxygen and nitrogen species. Berlin, Heidelberg, New York: Springer-Verlag. 2003: 211-222

15
KeyerK, GortA S, ImlayJ A. Superoxide and the production of oxidative DNA damage. J Bacteriol, 1995, 177(23): 6782-6790

16
MooreR J, OwensD M, StampG, ArnottC, BurkeF, EastN, HoldsworthH, TurnerL, RollinsB, PasparakisM, KolliasG, BalkwillF. Mice deficient in tumor necrosis factor-alpha are resis tant to skin carcinogenesis. Nat Med, 1999, 5(7): 828-831

DOI

17
PikarskyE, PoratR M, SteinI, AbramovitchR, AmitS, KasemS, Gutkovich-PyestE, Urieli-ShovalS, GalunE, Ben-NeriahY. NF-kappa B functions as a tumour promoter in inflammation-associated cancer. Nature, 2004, 431(7007): 461-466

DOI

18
OhshimaH, TazawaH, SyllaB S, SawaT. Prevention of human cancer by modulation of chronic inflammatory processes. Mutat Res, 2005, 591(1--2): 110-122

DOI

19
KimY, LeeY S, ChoeJ, LeeH, KimY M, JeoungD. CD44-epidermal growth factor receptor interaction mediates hyaluronic acid-promoted cell motility by activating protein kinase C signaling involving Akt, Rac1, Phox, reactive oxygen species, focal adhesion kinase, and MMP-2. J Biol Chem, 2008, 283(33): 22513-22528

DOI

20
Ushio-FukaiM, NakamuraY. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett, 2008, 266(1): 37-52

DOI

21
ValkoM, LeibfritzD, MoncolJ, CroninM T, MazurM, TelserJ. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 2007, 39(1): 44-84

DOI

22
WarzochaK, RibeiroP, BienvenuJ, RoyP, CharlotC, RigalD, CoiffierB, SallesG. Genetic polymorphisms in the tumor necrosis factor locus influence non-Hodgkin's lymphoma outcome. Blood, 1998, 91(10): 3574-3581

23
NishinoH, TokudaH, SatomiY, MasudaM, OsakaY, YogosawaS, WadaS, MouX Y, TakayasuJ, MurakoshiM, JinnnoK, YanoM. Cancer prevention by antioxidants. Biofactors, 2004, 22(1-4): 57-61

DOI

24
LeeK T, TsaiS M, WangS N, LinS K, WuS H, ChuangS C, WuS H, MaH, TsaiL Y. Glutathione status in the blood and tissues of patients with virus-originated hepatocellular carcinoma. Clin Biochem, 2007, 40(15): 1157-1162

DOI

25
DasS, KhanN, MukherjeeS, BagchiD, GurusamyN, SwartzH, DasD K. Redox regulation of resveratrol-mediated switching of death signal into survival signal. Free Radic Biol Med, 2008, 44(1): 82-90

DOI

26
ShankarS, GanapathyS, SrivastavaR K. Green tea polyphenols: biology and therapeutic implications in cancer. Front Biosci, 2007, 12: 4881-4899

DOI

27
TianB, XuZ, SunZ, LinJ, HuaY. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim Biophys Acta, 2007, 1770(6): 902-911

28
BedardK, KrauseK H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev, 2007, 87(1): 245-313

DOI

29
WangG, AnratherJ, GlassM J, TarsitanoM J, ZhouP, FrysK A, PickelV M, IadecolaC. Nox2, Ca2+ and PKC play a role in angiotensin II-induced free radical production in nucleus tractus solitarius. Hypertension, 2006, 48 (3): 482-489

DOI

30
WilkinsonB L, LandrethG E. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer’s disease. J Neuroinflamm, 2006, 3: 30

DOI

31
TieuK, IschiropoulosH, PrzedborskiS. Nitric oxide and reactive oxygen species in Parkinson's disease. IUBMB Life, 2003, 55(6): 329-335

DOI

Outlines

/