REVIEW

Progress in tumor vascular normalization for anticancer therapy: challenges and perspectives

  • Bingxue Shang ,
  • Zhifei Cao ,
  • Quansheng Zhou
Expand
  • Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215123, China; Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou 215123, China

Received date: 09 Oct 2011

Accepted date: 16 Nov 2011

Published date: 05 Mar 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Antitumor angiogenic therapy has been shown promising in the treatment of several advanced cancers since the approval of the first antiangiogenic drug Avastin in 2004. Although the current antiangiogenic drugs reduce the density of tumor blood vessels and result in tumor shrinkage at the early stage of treatment, recent studies have shown that antiangiogenic therapy has transient and insufficient efficacy, resulting in tumor recurrence in patients after several months of treatment. Blockage of blood and oxygen supplies creates a hypoxic and acidic microenvironment in the tumor tissues, which fosters tumor cells to become more aggressive and metastatic. In 2001, Jain proposed tumor vascular normalization as an alternative approach to treating cancers based on the pioneering work on tumor blood vessels by several other researchers. At present, normalizing the disorganized tumor vasculature, rather than disrupting or blocking them, has emerged as a new option for anticancer therapy. Preclinical and clinical data have shown that tumor vascular normalization using monoclonal antibodies, proteins, peptides, small molecules, and pericytes resulted in decreased tumor size and reduced metastasis. However, current tumor vascular normalizing drugs display moderate anticancer efficacy. Accumulated data have shown that a variety of vasculogenic/angiogenic tumor cells and genes play important roles in tumor neovascularization, growth, and metastasis. Therefore, multiple-targeting of vasculogenic tumor cells and genes may improve the efficacy of tumor vascular normalization. To this end, the combination of antiangiogenic drugs with tumor vascular normalizing therapeutics, as well as the integration of Western medicine with traditional Chinese medicine, may provide a good opportunity for discovering novel tumor vascular normalizing drugs for an effective anticancer therapy.

Cite this article

Bingxue Shang , Zhifei Cao , Quansheng Zhou . Progress in tumor vascular normalization for anticancer therapy: challenges and perspectives[J]. Frontiers of Medicine, 2012 , 6(1) : 67 -78 . DOI: 10.1007/s11684-012-0176-8

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (Grant No.30971138), the Science Foundation of Suzhou City (No. SWG0904 and No. SS201004), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and a Special National Strategic Leader Project of China (No. XDA01040200).
1
Ebos JM, Kerbel RS. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 2011; 8(4): 210-221

DOI PMID

2
Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285(21): 1182-1186

DOI PMID

3
Heath VL, Bicknell R. Anticancer strategies involving the vasculature. Nat Rev Clin Oncol 2009; 6(7): 395-404

DOI PMID

4
Ribatti D. Endogenous inhibitors of angiogenesis: a historical review. Leuk Res 2009; 33(5): 638-644

DOI PMID

5
Ribatti D. The discovery of antiangiogenic molecules: a historical review. Curr Pharm Des 2009; 15(4): 345-352

DOI PMID

6
Van Cutsem E, Lambrechts D, Prenen H, Jain RK, Carmeliet P. Lessons from the adjuvant bevacizumab trial on colon cancer: what next? J Clin Oncol 2011; 29(1): 1-4

DOI PMID

7
Miles D, Harbeck N, Escudier B, Hurwitz H, Saltz L, Van Cutsem E, Cassidy J, Mueller B, Sirzén F. Disease course patterns after discontinuation of bevacizumab: pooled analysis of randomized phase III trials. J Clin Oncol 2011; 29(1): 83-88

DOI PMID

8
Otrock ZK, Hatoum HA, Awada AH, Ishak RS, Shamseddine AI. Hypoxia-inducible factor in cancer angiogenesis: structure, regulation and clinical perspectives. Crit Rev Oncol Hematol 2009; 70(2): 93-102

DOI PMID

9
Osinsky S, Zavelevich M, Vaupel P. Tumor hypoxia and malignant progression. Exp Oncol 2009; 31(2): 80-86

PMID

10
Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001; 7(9): 987-989

DOI PMID

11
Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307(5706): 58-62

DOI PMID

12
Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 2011; 10(6): 417-427

DOI PMID

13
Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 2011; 91(3): 1071-1121

DOI PMID

14
Sato Y. Persistent vascular normalization as an alternative goal of anti-angiogenic cancer therapy. Cancer Sci 2011; 102(7): 1253-1256

DOI PMID

15
Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 2007; 74(2-3): 72-84

DOI PMID

16
Hess AR, Margaryan NV, Seftor EA, Hendrix MJ. Deciphering the signaling events that promote melanoma tumor cell vasculogenic mimicry and their link to embryonic vasculogenesis: role of the Eph receptors. Dev Dyn 2007; 236(12): 3283-3296

DOI PMID

17
Kučera T, Lammert E. Ancestral vascular tube formation and its adoption by tumors. Biol Chem 2009; 390(10): 985-994

DOI PMID

18
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473(7347): 298-307

DOI PMID

19
Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell 2011; 146(6): 873-887

DOI PMID

20
Shen R, Ye Y, Chen L, Yan Q, Barsky SH, Gao JX. Precancerous stem cells can serve as tumor vasculogenic progenitors. PLoS One, 2008; 3(2): e1652

21
Menakuru SR, Brown NJ, Staton CA, Reed MW. Angiogenesis in pre-malignant conditions. Br J Cancer 2008; 99(12): 1961-1966

DOI PMID

22
Hong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S, Green J, Colman S, Piacibello W, Buckle V, Tsuzuki S, Greaves M, Enver T. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 2008; 319(5861): 336-339

DOI PMID

23
Hill RP, Marie-Egyptienne DT, Hedley DW. Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol 2009; 19(2): 106-111

DOI PMID

24
Zhao Y, Dong J, Huang Q, Lou M, Wang A, Lan Q. Endothelial cell transdifferentiation of human glioma stem progenitor cells in vitro. Brain Res Bull 2010; 82(5-6): 308-312

DOI PMID

25
Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C, Tabar V. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 2010; 468(7325): 829-833

DOI PMID

26
Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De Maria R. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 2010; 468(7325): 824-828

DOI PMID

27
Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F, Michiue H, Pastorino S, Yang M, Hoffman RM, Kesari S, Verma IM. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci USA 2011; 108(11): 4274-4280

DOI PMID

28
Chiao MT, Yang YC, Cheng WY, Shen CC, Ko JL. CD133+ glioblastoma stem-like cells induce vascular mimicry in vivo. Curr Neurovasc Res 2011; 8(3): 210-219

DOI PMID

29
Ping YF, Bian XW. Consice review: contribution of cancer stem cells to neovascularization. Stem Cells 2011; 29(6): 888-894

DOI PMID

30
Ahn GO, Brown JM. Role of endothelial progenitors and other bone marrow-derived cells in the development of the tumor vasculature. Angiogenesis 2009; 12(2): 159-164

DOI PMID

31
Ria R, Piccoli C, Cirulli T, Falzetti F, Mangialardi G, Guidolin D, Tabilio A, Di Renzo N, Guarini A, Ribatti D, Dammacco F, Vacca A. Endothelial differentiation of hematopoietic stem and progenitor cells from patients with multiple myeloma. Clin Cancer Res 2008; 14(6): 1678-1685

DOI PMID

32
Vacca A, Ribatti D. Bone marrow angiogenesis in multiple myeloma. Leukemia 2006; 20(2): 193-199

DOI PMID

33
Chen H, Campbell RA, Chang Y, Li M, Wang CS, Li J, Sanchez E, Share M, Steinberg J, Berenson A, Shalitin D, Zeng Z, Gui D, Perez-Pinera P, Berenson RJ, Said J, Bonavida B, Deuel TF, Berenson JR. Pleiotrophin produced by multiple myeloma induces transdifferentiation of monocytes into vascular endothelial cells: a novel mechanism of tumor-induced vasculogenesis. Blood 2009; 113(9): 1992-2002

DOI PMID

34
Scavelli C, Nico B, Cirulli T, Ria R, Di Pietro G, Mangieri D, Bacigalupo A, Mangialardi G, Coluccia AM, Caravita T, Molica S, Ribatti D, Dammacco F, Vacca A. Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene 2008; 27(5): 663-674

DOI PMID

35
Maltby S, Khazaie K, McNagny KM. Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta 2009; 1796(1): 19-26

PMID

36
Ball SG, Shuttleworth CA, Kielty CM. Mesenchymal stem cells and neovascularization: role of platelet-derived growth factor receptors. J Cell Mol Med 2007; 11(5): 1012-1030

DOI PMID

37
Chen MY, Lie PC, Li ZL, Wei X. Endothelial differentiation of Wharton’s jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Exp Hematol 2009; 37(5): 629-640

DOI PMID

38
Siveen KS, Kuttan G. Role of macrophages in tumour progression. Immunol Lett 2009; 123(2): 97-102

DOI PMID

39
Coffelt SB, Hughes R, Lewis CE. Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim Biophys Acta 2009; 1796(1): 11-18

PMID

40
Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS, Hendrix MJ. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999; 155(3): 739-752

DOI PMID

41
Folberg R, Hendrix MJ, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 2000; 156(2): 361-381

DOI PMID

42
Seftor RE, Seftor EA, Koshikawa N, Meltzer PS, Gardner LM, Bilban M, Stetler-Stevenson WG, Quaranta V, Hendrix MJ. Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res 2001; 61(17): 6322-6327

PMID

43
Sood AK, Fletcher MS, Zahn CM, Gruman LM, Coffin JE, Seftor EA, Hendrix MJ. The clinical significance of tumor cell-lined vasculature in ovarian carcinoma: implications for anti-vasculogenic therapy. Cancer Biol Ther 2002; 1(6): 661-664

PMID

44
Hendrix MJ, Seftor EA, Hess AR, Seftor RE. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 2003; 3(6): 411-421

DOI PMID

45
Folberg R, Maniotis AJ. Vasculogenic mimicry. APMIS 2004; 112(7-8): 508-525

DOI PMID

46
Zhang S, Zhang D, Sun B. Vasculogenic mimicry: current status and future prospects. Cancer Lett 2007; 254(2): 157-164

DOI PMID

47
Rak J, Milsom C, Yu J. Vascular determinants of cancer stem cell dormancy—do age and coagulation system play a role? APMIS 2008; 116(7-8): 660-676

DOI PMID

48
Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer 2011;11(4):239-253

DOI PMID

49
Chiarugi V, Magnelli L, Cinelli M, Ruggiero M. Oncogenes, p53, and tumor angiogenesis. J Cancer Res Clin Oncol 1998; 124(9): 523-525

DOI PMID

50
Giri D, Ittmann M. Inactivation of the PTEN tumor suppressor gene is associated with increased angiogenesis in clinically localized prostate carcinoma. Hum Pathol 1999; 30(4): 419-424

DOI PMID

51
Bohonowych JE,Gopal U, Isaacs JS. Hsp90 as a gatekeeper of tumor angiogenesis: clinical promise and potential pitfalls. J Oncol 2010; 2010: 412985

52
Gao JX. Cancer stem cells: the lessons from pre-cancerous stem cells. J Cell Mol Med 2008; 12(1): 67-96

DOI PMID

53
Midulla M, Verma R, Pignatelli M, Ritter MA, Courtenay-Luck NS, George AJ. Source of oncofetal ED-B-containing fibronectin: implications of production by both tumor and endothelial cells. Cancer Res 2000; 60(1): 164-169

PMID

54
Ye Y, Yin DT, Chen L, Zhou Q, Shen R, He G, Yan Q, Tong Z, Issekutz AC, Shapiro CL, Barsky SH, Lin H, Li JJ, Gao JX. Identification of Piwil2-like (PL2L) proteins that promote tumorigenesis. PLoS ONE 2010; 5(10): e13406

DOI PMID

55
Oike Y, Ito Y, Hamada K, Zhang XQ, Miyata K, Arai F, Inada T, Araki K, Nakagata N, Takeya M, Kisanuki YY, Yanagisawa M, Gale NW, Suda T. Regulation of vasculogenesis and angiogenesis by EphB/ephrin-B2 signaling between endothelial cells and surrounding mesenchymal cells. Blood 2002; 100(4): 1326-1333

PMID

56
Djokovic D, Trindade A, Gigante J, Badenes M, Silva L, Liu R, Li X, Gong M, Krasnoperov V, Gill PS, Duarte A. Combination of Dll4/Notch and Ephrin-B2/EphB4 targeted therapy is highly effective in disrupting tumor angiogenesis. BMC Cancer 2010; 10(1): 641-652

DOI PMID

57
McColgan P, Sharma P. Polymorphisms of matrix metalloproteinases 1, 2, 3 and 9 and susceptibility to lung, breast and colorectal cancer in over 30,000 subjects. Int J Cancer 2009; 125(6): 1473-1478

DOI PMID

58
Taveau JC, Dubois M, Le Bihan O, Trépout S, Almagro S, Hewat E, Durmort C, Heyraud S, Gulino-Debrac D, Lambert O. Structure of artificial and natural VE-cadherin-based adherens junctions. Biochem Soc Trans 2008; 36(2): 189-193

DOI PMID

59
Sun Q, Zhou H, Binmadi NO, Basile JR. Hypoxia-inducible factor-1-mediated regulation of semaphorin 4D affects tumor growth and vascularity. J Biol Chem 2009; 284(46): 32066-32074

DOI PMID

60
Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87(7): 1171-1180

DOI PMID

61
Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD. Increased vascularization in mice overexpressing angiopoietin-1. Science 1998; 282(5388): 468-471

DOI PMID

62
Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 1999; 286(5449): 2511-2514

DOI PMID

63
Hayes AJ, Huang WQ, Yu J, Maisonpierre PC, Liu A, Kern FG, Lippman ME, McLeskey SW, Li LY. Expression and function of angiopoietin-1 in breast cancer. Br J Cancer 2000; 83(9): 1154-1160

DOI PMID

64
Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, Jain RK. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004; 10(2): 145-147

DOI PMID

65
Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 2005; 333(2): 328-335

DOI PMID

66
Jain RK, Duda DG, Willett CG, Sahani DV, Zhu AX, Loeffler JS, Batchelor TT, Sorensen AG. Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol 2009; 6(6): 327-338

DOI PMID

67
Greenberg JI, Cheresh DA. VEGF as an inhibitor of tumor vessel maturation: implications for cancer therapy. Expert Opin Biol Ther 2009; 9(11): 1347-1356

DOI PMID

68
Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004; 64(11): 3731-3736

DOI PMID

69
Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, Munn LL, Jain RK. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 2004; 6(6): 553-563

PMID

70
Ladroue C, Carcenac R, Leporrier M, Gad S, Le Hello C, Galateau-Salle F, Feunteun J, Pouysségur J, Richard S, Gardie B. PHD2 mutation and congenital erythrocytosis with paraganglioma. N Engl J Med 2008; 359(25): 2685-2692

DOI PMID

71
Mazzone M, Dettori D, Leite de Oliveira R, Loges S, Schmidt T, Jonckx B, Tian YM, Lanahan AA, Pollard P, Ruiz de Almodovar C, De Smet F, Vinckier S, Aragonés J, Debackere K, Luttun A, Wyns S, Jordan B, Pisacane A, Gallez B, Lampugnani MG, Dejana E, Simons M, Ratcliffe P, Maxwell P, Carmeliet P. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 2009; 136(5): 839-851

DOI PMID

72
Kim JW, Johnson RS. You don’t need a PHD to grow a tumor. Dev Cell 2009; 16(6): 781-782

DOI PMID

73
Choi HJ, Song BJ, Gong YD, Gwak WJ, Soh Y. Rapid degradation of hypoxia-inducible factor-1alpha by KRH102053, a new activator of prolyl hydroxylase 2. Br J Pharmacol 2008; 154(1): 114-125

DOI PMID

74
Nepal M, Gong YD, Park YR, Soh Y. An activator of PHD2, KRH102140, decreases angiogenesis via inhibition of HIF-1α. Cell Biochem Funct 2011; 29(2): 126-134

DOI PMID

75
Vestweber D. VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol 2008; 28(2): 223-232

DOI PMID

76
Gavard J. Breaking the VE-cadherin bonds. FEBS Lett 2009; 583(1): 1-6

DOI PMID

77
Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 2008; 121(13): 2115-2122

DOI PMID

78
Zhang LZ, Mei J, Qian ZK, Cai XS, Jiang Y, Huang WD. The role of VE-cadherin in osteosarcoma cells. Pathol Oncol Res 2010; 16(1): 111-117

DOI PMID

79
Cavallaro U, Liebner S, Dejana E. Endothelial cadherins and tumor angiogenesis. Exp Cell Res 2006; 312(5): 659-667

DOI PMID

80
Labelle M, Schnittler HJ, Aust DE, Friedrich K, Baretton G, Vestweber D, Breier G. Vascular endothelial cadherin promotes breast cancer progression via transforming growth factor beta signaling. Cancer Res 2008; 68(5): 1388-1397

DOI PMID

81
Otani A, Slike BM, Dorrell MI, Hood J, Kinder K, Ewalt KL, Cheresh D, Schimmel P, Friedlander M. A fragment of human TrpRS as a potent antagonist of ocular angiogenesis. Proc Natl Acad Sci USA 2002; 99(1): 178-183

DOI PMID

82
Banin E, Dorrell MI, Aguilar E, Ritter MR, Aderman CM, Smith AC, Friedlander J, Friedlander M. T2-TrpRS inhibits preretinal neovascularization and enhances physiological vascular regrowth in OIR as assessed by a new method of quantification. Invest Ophthalmol Vis Sci 2006; 47(5): 2125-2134

DOI PMID

83
Zhou Q, Kiosses WB, Liu J, Schimmel P. Tumor endothelial cell tube formation model for determining anti-angiogenic activity of a tRNA synthetase cytokine. Methods 2008; 44(2): 190-195

DOI PMID

84
Zhou Q, Kapoor M, Guo M, Belani R, Xu X, Kiosses WB, Hanan M, Park C, Armour E, Do MH, Nangle LA, Schimmel P, Yang XL. Orthogonal use of a human tRNA synthetase active site to achieve multifunctionality. Nat Struct Mol Biol 2010; 17(1): 57-61

DOI PMID

85
Jaggi JS, Henke E, Seshan SV, Kappel BJ, Chattopadhyay D, May C, McDevitt MR, Nolan D, Mittal V, Benezra R, Scheinberg DA. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization. PLoS ONE 2007; 2(3): e267

DOI PMID

86
Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, Squadrito ML, Segura I, Li X, Knevels E, Costa S, Vinckier S, Dresselaer T, Åkerud P, De Mol M, Salomäki H, Phillipson M, Wyns S, Larsson E, Buysschaert I, Botling J, Himmelreich U, Van Ginderachter JA, De Palma M, Dewerchin M, Claesson-Welsh L, Carmeliet P. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 2011; 19(1): 31-44

DOI PMID

87
Wang L, Zhou GB, Liu P, Song JH, Liang Y, Yan XJ, Xu F, Wang BS, Mao JH, Shen ZX, Chen SJ, Chen Z. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci USA 2008; 105(12): 4826-4831

DOI PMID

88
Xiong L, Tian SX. A concept of regulating tumor microenvironment immune and normalizing angiogenesis by Chinese medicine drug therapy for supporting zheng-qi to prop up root. Chin J Integr Traidt West Med (Zhongguo Zhong Xi Yi Jie He Za Zhi) 2010; 30(2): 201-204 (in Chinese)

PMID

89
Pang X, Yi Z, Zhang J, Lu B, Sung B, Qu W, Aggarwal BB, Liu M. Celastrol suppresses angiogenesis-mediated tumor growth through inhibition of AKT/mammalian target of rapamycin pathway. Cancer Res 2010; 70(5): 1951-1959

DOI PMID

90
Pang X, Yi T, Yi Z, Cho SG, Qu W, Pinkaew D, Fujise K, Liu M. Morelloflavone, a biflavonoid, inhibits tumor angiogenesis by targeting rho GTPases and extracellular signal-regulated kinase signaling pathways. Cancer Res 2009; 69(2): 518-525

DOI PMID

91
Qiang L, Yang Y, You QD, Ma YJ, Yang L, Nie FF, Gu HY, Zhao L, Lu N, Qi Q, Liu W, Wang XT, Guo QL. Inhibition of glioblastoma growth and angiogenesis by gambogic acid: an in vitro and in vivo study. Biochem Pharmacol 2008; 75(5): 1083-1092

DOI PMID

92
Pang X, Yi Z, Zhang X, Sung B, Qu W, Lian X, Aggarwal BB, Liu M. Acetyl-11-keto-beta-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res 2009; 69(14): 5893-5900

DOI PMID

93
Park B, Sung B, Yadav VR, Cho SG, Liu M, Aggarwal BB. Acetyl-11-keto-β-boswellic acid suppresses invasion of pancreatic cancer cells through the downregulation of CXCR4 chemokine receptor expression. Int J Cancer 2011; 129(1): 23-33

DOI PMID

94
Pang X, Zhang L, Lai L, Chen J, Wu Y, Yi Z, Zhang J, Qu W, Aggarwal BB, Liu M. 1′-Acetoxychavicol acetate suppresses angiogenesis-mediated human prostate tumor growth by targeting VEGF-mediated Src-FAK-Rho GTPase-signaling pathway. Carcinogenesis 2011; 32(6): 904-912

DOI PMID

95
Kuang L, Wang L, Wang Q, Zhao Q, Du B, Li D, Luo J, Liu M, Hou A, Qian M. Cudratricusxanthone G inhibits human colorectal carcinoma cell invasion by MMP-2 down-regulation through suppressing activator protein-1 activity. Biochem Pharmacol 2011; 81(10): 1192-1200

DOI PMID

96
Liu XD, Fan RF, Zhang Y, Yang HZ, Fang ZG, Guan WB, Lin DJ, Xiao RZ, Huang RW, Huang HQ, Liu PQ, Liu JJ. Down-regulation of telomerase activity and activation of caspase-3 are responsible for tanshinone I-induced apoptosis in monocyte leukemia cells in vitro. Int J Mol Sci 2010; 11(6): 2267-2280

DOI PMID

97
Wu Y, Fan Q, Lu N, Tao L, Gao Y, Qi Q, Guo Q. Breviscapine-induced apoptosis of human hepatocellular carcinoma cell line HepG2 was involved in its antitumor activity. Phytother Res 2010; 24(8): 1188-1194

PMID

98
Lin J, Wei L, Xu W, Hong Z, Liu X, Peng J. Effect of Hedyotis diffusa Willd extract on tumor angiogenesis. Mol Med Report 2011; 4(6): 1283-1288

PMID

99
You J. Study on the tumor microenvironment and tumor vascular normalization in integrative treatment of tumor by Chinese medicine and western medicine.Chin J Integr Traidt West Med (Zhongguo Zhong Xi Yi Jie He Za Zhi) 2011; 31(8): 1127-1131 (in Chinese)

PMID

100
Hida K, Hida Y, Amin DN, Flint AF, Panigrahy D, Morton CC, Klagsbrun M. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 2004; 64(22): 8249-8255

DOI PMID

101
Tian S, Hayes AJ, Metheny-Barlow LJ, Li LY. Stabilization of breast cancer xenograft tumour neovasculature by angiopoietin-1. Br J Cancer 2002; 86(4): 645-651

DOI PMID

102
Metheny-Barlow LJ, Li LY. The enigmatic role of angiopoietin-1 in tumor angiogenesis. Cell Res 2003; 13(5): 309-317

DOI PMID

103
Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD, McDonald DM. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 2004; 165(1): 35-52

DOI PMID

104
Coulon C, Georgiadou M, Roncal C, De Bock K, Langenberg T, Carmeliet P. From vessel sprouting to normalization: role of the prolyl hydroxylase domain protein/hypoxia-inducible factor oxygen-sensing machinery. Arterioscler Thromb Vasc Biol 2010; 30(12): 2331-2336

DOI PMID

105
Sorensen AG, Batchelor TT, Zhang WT, Chen PJ, Yeo P, Wang M, Jennings D, Wen PY, Lahdenranta J, Ancukiewicz M, di Tomaso E, Duda DG, Jain RK. A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 2009; 69(13): 5296-5300

DOI PMID

106
Zhang Q, Bindokas V, Shen J, Fan H, Hoffman RM, Xing HR. Time-course imaging of therapeutic functional tumor vascular normalization by antiangiogenic agents. Mol Cancer Ther 2011; 10(7): 1173-1184

DOI PMID

107
Hormigo A, Gutin PH, Rafii S. Tracking normalization of brain tumor vasculature by magnetic imaging and proangiogenic biomarkers. Cancer Cell 2007; 11(1): 6-8

DOI PMID

Outlines

/