REVIEW

In vivo imaging of hematopoietic stem cell development in the zebrafish

  • Panpan Zhang ,
  • Feng Liu
Expand
  • State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

Received date: 29 Dec 2010

Accepted date: 14 Feb 2011

Published date: 05 Sep 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In vivo imaging is crucial for developmental biology and can further help to follow cell development/differentiation in normal and pathological conditions. Recent advances in optical imaging techniques has facilitated tracing of the developmental dynamics of a specific organ, tissue, or even a single cell. The zebrafish is an excellent model for imaging of hematopoiesis due to its transparent embryo at early stage; moreover, different zebrafish hematopoietic stem cells (HSCs) transgenic lines have been demonstrated as very useful tools for illustrating the details of the HSC developmental process. In this review, we summarize recent studies related to the non-invasive in vivo imaging of HSC transgenics, to show that zebrafish transgenic lines are powerful tools for developmental biology and disease. At the end of the review, the perspective and some open questions in this field will be discussed.

Cite this article

Panpan Zhang , Feng Liu . In vivo imaging of hematopoietic stem cell development in the zebrafish[J]. Frontiers of Medicine, 2011 , 5(3) : 239 -247 . DOI: 10.1007/s11684-011-0123-0

Acknowledgments

This work was supported by grants from the National Basic Research Program of China (2010CB945300, 2011CB943900) and the National Science Foundation of China grant (30971678).
1
Zon LI. Developmental biology of hematopoiesis. Blood 1995; 86(8): 2876–2891

PMID

2
Ingham PW. The power of the zebrafish for disease analysis. Hum Mol Genet 2009; 18(R1): R107–R112

DOI PMID

3
de Jong JL, Zon LI. Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu Rev Genet 2005; 39(1): 481–501

DOI PMID

4
Amatruda JF, Zon LI. Dissecting hematopoiesis and disease using the zebrafish. Dev Biol 1999; 216(1): 1–15

DOI PMID

5
Ciau-Uitz A, Liu F, Patient R. Genetic control of hematopoietic development in Xenopus and zebrafish. Int J Dev Biol 2010; 54(6-7): 1139–1149

DOI PMID

6
Chen AT, Zon LI. Zebrafish blood stem cells. J Cell Biochem 2009; 108(1): 35–42

DOI PMID

7
Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 2010; 464(7285): 108–111

DOI PMID

8
Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 2010; 464(7285): 116–120

DOI PMID

9
Kissa K, Herbomel P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 2010; 464(7285): 112–115

DOI PMID

10
Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin HF, Handin RI, Herbomel P. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 2006; 25(6): 963–975

DOI PMID

11
Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008; 132(4): 631–644

DOI PMID

12
Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 2010; 7(8): 603–614

DOI PMID

13
Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 1990; 248(4951): 73–76

DOI PMID

14
Shi X, Teo LS, Pan X, Chong SW, Kraut R, Korzh V, Wohland T. Probing events with single molecule sensitivity in zebrafish and Drosophila embryos by fluorescence correlation spectroscopy. Dev Dyn 2009; 238(12): 3156–3167

DOI PMID

15
Kimmel CB, Warga RM, Schilling TF. Origin and organization of the zebrafish fate map. Development 1990; 108(4): 581–594

PMID

16
Warga RM, Kimmel CB. Cell movements during epiboly and gastrulation in zebrafish. Development 1990; 108(4): 569–580

PMID

17
Vogeli KM, Jin SW, Martin GR, Stainier DY. A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 2006; 443(7109): 337–339

DOI PMID

18
Hatta K, Tsujii H, Omura T. Cell tracking using a photoconvertible fluorescent protein. Nat Protoc 2006; 1(2): 960–967

DOI PMID

20
Collins RT, Linker C, Lewis J. MAZe: a tool for mosaic analysis of gene function in zebrafish. Nat Methods 2010; 7(3): 219–223

DOI PMID

21
Detrich HW 3rd, Kieran MW, Chan FY, Barone LM, Yee K, Rundstadler JA, Pratt S, Ransom D, Zon LI. Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci USA 1995; 92(23): 10713–10717

DOI PMID

22
Davidson AJ, Ernst P, Wang Y, Dekens MP, Kingsley PD, Palis J, Korsmeyer SJ, Daley GQ, Zon LI. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 2003; 425(6955): 300–306

DOI PMID

23
Kalev-Zylinska ML, Horsfield JA, Flores MV, Postlethwait JH, Vitas MR, Baas AM, Crosier PS, Crosier KE. Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development 2002; 129(8): 2015–2030

DOI PMID

24
Liu F, Wen Z. Cloning and expression pattern of the lysozyme C gene in zebrafish. Mech Dev 2002; 113(1): 69–72

DOI PMID

25
Patterson LJ, Gering M, Eckfeldt CE, Green AR, Verfaillie CM, Ekker SC, Patient R. The transcription factors Scl and Lmo2 act together during development of the hemangioblast in zebrafish. Blood 2007; 109(6): 2389–2398

DOI PMID

26
Fouquet B, Weinstein BM, Serluca FC, Fishman MC. Vessel patterning in the embryo of the zebrafish: guidance by notochord. Dev Biol 1997; 183(1): 37–48

DOI PMID

27
Gering M, Patient R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev Cell 2005; 8(3): 389–400

DOI PMID

28
Wilkinson RN, Pouget C, Gering M, Russell AJ, Davies SG, Kimelman D, Patient R. Hedgehog and Bmp polarize hematopoietic stem cell emergence in the zebrafish dorsal aorta. Dev Cell 2009; 16(6): 909–916

DOI PMID

29
Liu F, Walmsley M, Rodaway A, Patient R. Fli1 acts at the top of the transcriptional network driving blood and endothelial development. Curr Biol 2008; 18(16): 1234–1240

DOI PMID

30
Lawson ND, Vogel AM, Weinstein BM. sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 2002; 3(1): 127–136

DOI PMID

31
Burns CE, Galloway JL, Smith AC, Keefe MD, Cashman TJ, Paik EJ, Mayhall EA, Amsterdam AH, Zon LI. A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence. Blood 2009; 113(23): 5776–5782

DOI PMID

32
Burns CE, Traver D, Mayhall E, Shepard JL, Zon LI. Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes Dev 2005; 19(19): 2331–2342

DOI PMID

33
Kissa K, Murayama E, Zapata A, Cortés A, Perret E, Machu C, Herbomel P. Live imaging of emerging hematopoietic stem cells and early thymus colonization. Blood 2008; 111(3): 1147–1156

DOI PMID

34
Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 2009; 457(7231): 887–891

DOI PMID

35
Lin HF, Traver D, Zhu H, Dooley K, Paw BH, Zon LI, Handin RI. Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood 2005; 106(12): 3803–3810

DOI PMID

36
Bertrand JY, Kim AD, Teng S, Traver D. CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Development 2008; 135(10): 1853–1862

DOI PMID

37
North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang IH, Grosser T, Fitzgerald GA, Daley GQ, Orkin SH, Zon LI. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 2007; 447(7147): 1007–1011

DOI PMID

38
Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 2002; 248(2): 307–318

DOI PMID

39
Jin SW, Beis D, Mitchell T, Chen JN, Stainier DY. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 2005; 132(23): 5199–5209

DOI PMID

40
Long Q, Meng A, Wang H, Jessen JR, Farrell MJ, Lin S. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 1997; 124(20): 4105–4111

PMID

41
Jessen JR, Meng A, McFarlane RJ, Paw BH, Zon LI, Smith GR, Lin S. Modification of bacterial artificial chromosomes through chi-stimulated homologous recombination and its application in zebrafish transgenesis. Proc Natl Acad Sci USA 1998; 95(9): 5121–5126

DOI PMID

42
Bajoghli B, Ramialison M, Aghaallaei N, Czerny T, Wittbrodt J. Identification of starmaker-like in medaka as a putative target gene of Pax2 in the otic vesicle. Dev Dyn 2009; 238(11): 2860–2866

DOI PMID

43
Bertrand JY, Kim AD, Violette EP, Stachura DL, Cisson JL, Traver D. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 2007; 134(23): 4147–4156

DOI PMID

44
Hsu K, Traver D, Kutok JL, Hagen A, Liu TX, Paw BH, Rhodes J, Berman JN, Zon LI, Kanki JP, Look AT. The pu.1 promoter drives myeloid gene expression in zebrafish. Blood 2004; 104(5): 1291–1297

DOI PMID

45
Lam EY, Chau JY, Kalev-Zylinska ML, Fountaine TM, Mead RS, Hall CJ, Crosier PS, Crosier KE, Flores MV. Zebrafish runx1 promoter-EGFP transgenics mark discrete sites of definitive blood progenitors. Blood 2009; 113(6): 1241–1249

DOI PMID

46
Zhang XY, Rodaway AR. SCL-GFP transgenic zebrafish: in vivo imaging of blood and endothelial development and identification of the initial site of definitive hematopoiesis. Dev Biol 2007; 307(2): 179–194

DOI PMID

47
Thermes V, Grabher C, Ristoratore F, Bourrat F, Choulika A, Wittbrodt J, Joly JS. I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 2002; 118(1-2): 91–98

DOI PMID

48
Kawakami K, Shima A, Kawakami N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA 2000; 97(21): 11403–11408

DOI PMID

49
Kawakami K. Transposon tools and methods in zebrafish. Dev Dyn 2005; 234(2): 244–254

DOI PMID

50
Liu F, Patient R. Genome-wide analysis of the zebrafish ETS family identifies three genes required for hemangioblast differentiation or angiogenesis. Circ Res 2008; 103(10): 1147–1154

DOI PMID

51
Jin H, Xu J, Wen Z. Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development. Blood 2007; 109(12): 5208–5214

DOI PMID

52
Ng CE, Yokomizo T, Yamashita N, Cirovic B, Jin H, Wen Z, Ito Y, Osato M. A Runx1 intronic enhancer marks hemogenic endothelial cells and hematopoietic stem cells. Stem Cells 2010; 28(10): 1869–1881

DOI PMID

53
Zhu H, Traver D, Davidson AJ, Dibiase A, Thisse C, Thisse B, Nimer S, Zon LI. Regulation of the lmo2 promoter during hematopoietic and vascular development in zebrafish. Dev Biol 2005; 281(2): 256–269

DOI PMID

54
Bertrand JY, Giroux S, Golub R, Klaine M, Jalil A, Boucontet L, Godin I, Cumano A. Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc Natl Acad Sci USA 2005; 102(1): 134–139

DOI PMID

55
Finley KR, Davidson AE, Ekker SC. Three-color imaging using fluorescent proteins in living zebrafish embryos. Biotechniques 2001; 31(1): 66–70

PMID

56
Beis D, Stainier DY. In vivo cell biology: following the zebrafish trend. Trends Cell Biol 2006; 16(2): 105–112

DOI PMID

Outlines

/