Received date: 24 Dec 2010
Accepted date: 27 Jan 2011
Published date: 05 Mar 2011
Copyright
Tissue engineering aims to produce a functional tissue replacement to repair defects. Tissue reconstruction is an essential step toward the clinical application of engineered tissues. Significant progress has recently been achieved in this field. In our laboratory, we focus on construction of cartilage, tendon and bone. The purpose of this review was to summarize the advances in the engineering of these three tissues, particularly focusing on tissue regeneration and defect repair in our laboratory. In cartilage engineering, articular cartilage was reconstructed and defects were repaired in animal models. More sophisticated tissues, such as cartilage in the ear and trachea, were reconstructed both in vitro and in vivo with specific shapes and sizes. Engineered tendon was generated in vitro and in vivo in many animal models with tenocytes or dermal fibroblasts in combination with appropriate mechanical loading. Cranial and limb bone defects were also successfully regenerated and repaired in large animals. Based on sophisticated animal studies, several clinical trials of engineered bone have been launched with promising preliminary results, displaying the high potential for clinical application.
Key words: Tissue engineering; cartilage; bone; tendon; recent advances
Hengyun SUN , Wei LIU , Guangdong ZHOU , Wenjie ZHANG , Lei CUI , Yilin CAO . Tissue engineering of cartilage, tendon and bone[J]. Frontiers of Medicine, 2011 , 5(1) : 61 -69 . DOI: 10.1007/s11684-011-0122-1
1 |
Langer R, Vacanti J P. Tissue engineering. Science, 1993, 260(5110): 920–926
|
2 |
Wakitani S, Kimura T, Hirooka A, Ochi T, Yoneda M, Yasui N, Owaki H, Ono K. Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg Br, 1989, 71(1): 74–80
|
3 |
van Susante J L, Buma P, Homminga G N, van den Berg W B, Veth R P. Chondrocyte-seeded hydroxyapatite for repair of large articular cartilage defects. A pilot study in the goat. Biomaterials, 1998, 19(24): 2367–2374
|
4 |
Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med, 1994, 331(14): 889–895
|
5 |
Liu Y, Chen F, Liu W, Cui L, Shang Q, Xia W, Wang J, Cui Y, Yang G, Liu D, Wu J, Xu R, Buonocore S D, Cao Y. Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng, 2002, 8(4): 709–721
|
6 |
Zhou G, Liu W, Cui L, Wang X, Liu T, Cao Y. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Eng, 2006, 12(11): 3209–3221
|
7 |
Cao Y, Vacanti J P, Paige K T, Upton J, Vacanti C A. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg, 1997, 100(2): 297–302
|
8 |
Liu Y, Zhang L, Zhou G, Li Q, Liu W, Yu Z, Luo X, Jiang T, Zhang W, Cao Y. In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology. Biomaterials, 2010, 31(8): 2176–2183
|
9 |
Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs B G, Aigner T, Richter W. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum, 2006, 54(10): 3254–3266
|
10 |
Liu K, Zhou G D, Liu W, Zhang W J, Cui L, Liu X, Liu T Y, Cao Y. The dependence of in vivo stable ectopic chondrogenesis by human mesenchymal stem cells on chondrogenic differentiation in vitro. Biomaterials, 2008, 29(14): 2183–2192
|
11 |
Liu X, Sun H, Yan D, Zhang L, Lv X, Liu T, Zhang W, Liu W, Cao Y, Zhou G. In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials, 2010, 31(36): 9406–9414
|
12 |
Yang H N, Park J S, Na K, Woo D G, Kwon Y D, Park K H. The use of green fluorescence gene (GFP)-modified rabbit mesenchymal stem cells (rMSCs) co-cultured with chondrocytes in hydrogel constructs to reveal the chondrogenesis of MSCs. Biomaterials, 2009, 30(31): 6374–6385
|
13 |
Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noël D. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol, 2009, 27(5): 307–314
|
14 |
Luo X, Zhou G, Liu W, Zhang W J, Cen L, Cui L, Cao Y. In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage. Biomed Mater, 2009, 4(2): 025006
|
15 |
Macchiarini P, Jungebluth P, Go T, Asnaghi M A, Rees L E, Cogan T A, Dodson A, Martorell J, Bellini S, Parnigotto P P, Dickinson S C, Hollander A P, Mantero S, Conconi M T, Birchall M A. Clinical transplantation of a tissue-engineered airway. Lancet, 2008, 372(9655): 2023–2030
|
16 |
Cao Y, Liu Y, Liu W, Shan Q, Buonocore S D, Cui L. Bridging tendon defects using autologous tenocyte engineered tendon in a hen model. Plast Reconstr Surg, 2002, 110(5): 1280–1289
|
17 |
Wang B, Liu W, Zhang Y, Jiang Y, Zhang W J, Zhou G, Cui L, Cao Y. Engineering of extensor tendon complex by an ex vivo approach. Biomaterials, 2008, 29(20): 2954–2961
|
18 |
Liu W, Chen B, Deng D, Xu F, Cui L, Cao Y. Repair of tendon defect with dermal fibroblast engineered tendon in a porcine model. Tissue Eng, 2006, 12(4): 775–788
|
19 |
Cao D, Liu W, Wei X, Xu F, Cui L, Cao Y. In vitro tendon engineering with avian tenocytes and polyglycolic acids: a preliminary report. Tissue Eng, 2006, 12(5): 1369–1377
|
20 |
Deng D, Liu W, Xu F, Yang Y, Zhou G, Zhang W J, Cui L, Cao Y. Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain. Biomaterials, 2009, 30(35): 6724–6730
|
21 |
Muraglia A, Martin I, Cancedda R, Quarto R. A nude mouse model for human bone formation in unloaded conditions. Bone, 1998, 22(5 Suppl): 131S–134S
|
22 |
Bruder S P, Kurth A A, Shea M, Hayes W C, Jaiswal N, Kadiyala S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res, 1998, 16(2): 155–162
|
23 |
Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res, 2000, 49(3): 328–337
|
24 |
Bruder S P, Kraus K H, Goldberg V M, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am, 1998, 80(7): 985–996
|
25 |
Arinzeh T L, Peter S J, Archambault M P, van den Bos C, Gordon S, Kraus K, Smith A, Kadiyala S. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am, 2003, 85-A(10): 1927–1935
|
26 |
Aggarwal S, Pittenger M F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005, 105(4): 1815–1822
|
27 |
Kuo Y R, Goto S, Shih H S, Wang F S, Lin C C, Wang C T, Huang E Y, Chen C L, Wei F C, Zheng X X, Lee W P. Mesenchymal stem cells prolong composite tissue allotransplant survival in a swine model. Transplantation, 2009, 87(12): 1769–1777
|
28 |
Zhou H P, Yi D H, Yu S Q, Sun G C, Cui Q, Zhu H L, Liu J C, Zhang J Z, Wu T J. Administration of donor-derived mesenchymal stem cells can prolong the survival of rat cardiac allograft. Transplant Proc, 2006, 38(9): 3046–3051
|
29 |
Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 2004, 363(9419): 1439–1441
|
30 |
Cui L, Yin S, Liu W, Li N, Zhang W, Cao Y. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng, 2007, 13(6): 1185–1195
|
31 |
Shang Q, Wang Z, Liu W, Shi Y, Cui L, Cao Y. Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J Craniofac Surg, 2001, 12(6): 586–593, discussion 594-595
|
32 |
Weng Y, Wang M, Liu W, Hu X, Chai G, Yan Q, Zhu L, Cui L, Cao Y. Repair of experimental alveolar bone defects by tissue-engineered bone. Tissue Eng, 2006, 12(6): 1503–1513
|
33 |
Yuan J, Cui L, Zhang W J, Liu W, Cao Y. Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate. Biomaterials, 2007, 28(6): 1005–1013
|
34 |
Yuan J, Zhang W J, Liu G, Wei M, Qi Z L, Liu W, Cui L, Cao Y L. Repair of canine mandibular bone defects with bone marrow stromal cells and coral. Tissue Eng Part A, 2010, 16(4): 1385–1394
|
35 |
Zhu L, Liu W, Cui L, Cao Y. Tissue-engineered bone repair of goat-femur defects with osteogenically induced bone marrow stromal cells. Tissue Eng, 2006, 12(3): 423–433
|
36 |
Quarto R, Mastrogiacomo M, Cancedda R, Kutepov S M, Mukhachev V, Lavroukov A, Kon E, Marcacci M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med, 2001, 344(5): 385–386
|
37 |
Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng, 2007, 13(5): 947–955
|
38 |
Vacanti C A, Bonassar L J, Vacanti M P, Shufflebarger J. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med, 2001, 344(20): 1511–1514
|
39 |
Chai G, Zhang Y, Liu W, Cui L, Cao Y L. Clinical application of tissue engineered bone repair of human craniomaxillofacial bone defects. Zhonghua Yi Xue Za Zhi, 2003, 83(19): 1676–1681 (Chin Med J)
|
40 |
Zuk P A, Zhu M, Ashjian P, De Ugarte D A, Huang J I, Mizuno H, Alfonso Z C, Fraser J K, Benhaim P, Hedrick M H. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002, 13(12): 4279–4295
|
41 |
Cowan C M, Shi Y Y, Aalami O O, Chou Y F, Mari C, Thomas R, Quarto N, Contag C H, Wu B, Longaker M T. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol, 2004, 22(5): 560–567
|
/
〈 | 〉 |