Factors involved in human healthy aging: insights from longevity individuals

Fan-Qian Yin , Fu-Hui Xiao , Qing-Peng Kong

Front. Med. ›› 2025, Vol. 19 ›› Issue (2) : 226 -249.

PDF (2790KB)
Front. Med. ›› 2025, Vol. 19 ›› Issue (2) : 226 -249. DOI: 10.1007/s11684-024-1120-4
REVIEW

Factors involved in human healthy aging: insights from longevity individuals

Author information +
History +
PDF (2790KB)

Abstract

The quest to decipher the determinants of human longevity has intensified with the rise in global life expectancy. Long-lived individuals (LLIs), who exceed the average life expectancy while delaying age-related diseases, serve as a unique model for studying human healthy aging and longevity. Longevity is a complex phenotype influenced by both genetic and non-genetic factors. This review paper delves into the genetic, epigenetic, metabolic, immune, and environmental factors underpinning the phenomenon of human longevity, with a particular focus on LLIs, such as centenarians. By integrating findings from human longevity studies, this review highlights a diverse array of factors influencing longevity, ranging from genetic polymorphisms and epigenetic modifications to the impacts of diet and physical activity. As life expectancy grows, understanding these factors is crucial for developing strategies that promote a healthier and longer life.

Keywords

longevity / centenarians / longevity factors / age-related diseases / long-lived individuals

Cite this article

Download citation ▾
Fan-Qian Yin, Fu-Hui Xiao, Qing-Peng Kong. Factors involved in human healthy aging: insights from longevity individuals. Front. Med., 2025, 19(2): 226-249 DOI:10.1007/s11684-024-1120-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Crimmins EM. Lifespan and healthspan: past, present, and promise. Gerontologist 2015; 55(6): 901–911

[2]

Christensen K, Doblhammer G, Rau R, Vaupel JW. Ageing populations: the challenges ahead. Lancet 2009; 374(9696): 1196–1208

[3]

Wilmoth JR. Demography of longevity: past, present, and future trends. Exp Gerontol 2000; 35(9-10): 1111–1129

[4]

Borras C, Ingles M, Mas-Bargues C, Dromant M, Sanz-Ros J, Román-Domínguez A, Gimeno-Mallench L, Gambini J, Viña J. Centenarians: an excellent example of resilience for successful ageing. Mech Ageing Dev 2020; 186: 111199

[5]

Engberg H, Oksuzyan A, Jeune B, Vaupel JW, Christensen K. Centenarians—a useful model for healthy aging? A 29-year follow-up of hospitalizations among 40, 000 Danes born in 1905. Aging Cell 2009; 8(3): 270–276

[6]

Franceschi C, Bonafè M. Centenarians as a model for healthy aging. Biochem Soc Trans 2003; 31(2): 457–461

[7]

GBD 2015 Mortality, Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053): 1459–1544

[8]

Murabito JM, Yuan R, Lunetta KL. The search for longevity and healthy aging genes: insights from epidemiological studies and samples of long-lived individuals. J Gerontol A Biol Sci Med Sci 2012; 67A(5): 470–479

[9]

Newman AB, Murabito JM. The epidemiology of longevity and exceptional survival. Epidemiol Rev 2013; 35(1): 181–197

[10]

Deelen J, Beekman M, Uh HW, Broer L, Ayers KL, Tan Q, Kamatani Y, Bennet AM, Tamm R, Trompet S, Guðbjartsson DF, Flachsbart F, Rose G, Viktorin A, Fischer K, Nygaard M, Cordell HJ, Crocco P, van den Akker EB, Böhringer S, Helmer Q, Nelson CP, Saunders GI, Alver M, Andersen-Ranberg K, Breen ME, van der Breggen R, Caliebe A, Capri M, Cevenini E, Collerton JC, Dato S, Davies K, Ford I, Gampe J, Garagnani P, de Geus EJC, Harrow J, van Heemst D, Heijmans BT, Heinsen FA, Hottenga JJ, Hofman A, Jeune B, Jonsson PV, Lathrop M, Lechner D, Martin-Ruiz C, Mcnerlan SE, Mihailov E, Montesanto A, Mooijaart SP, Murphy A, Nohr EA, Paternoster L, Postmus I, Rivadeneira F, Ross OA, Salvioli S, Sattar N, Schreiber S, Stefánsson H, Stott DJ, Tiemeier H, Uitterlinden AG, Westendorp RGJ, Willemsen G, Samani NJ, Galan P, Sørensen TIA, Boomsma DI, Jukema JW, Rea IM, Passarino G, de Craen AJM, Christensen K, Nebel A, Stefánsson K, Metspalu A, Magnusson P, Blanché H, Christiansen L, Kirkwood TBL, van Duijn CM, Franceschi C, Houwing-Duistermaat JJ, Slagboom PE. Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age. Hum Mol Genet 2014; 23(16): 4420–4432

[11]

Revelas M, Thalamuthu A, Oldmeadow C, Evans TJ, Armstrong NJ, Kwok JB, Brodaty H, Schofield PR, Scott RJ, Sachdev PS, Attia JR, Mather KA. Review and meta-analysis of genetic polymorphisms associated with exceptional human longevity. Mech Ageing Dev 2018; 175: 24–34

[12]

Poulain M, Herm A, Pes G. The blue zones: areas of exceptional longevity around the world. Vienna Yearb Popul Res 2013; 11: 87–108

[13]

Caselli G, Pozzi L, Vaupel JW, Deiana L, Pes G, Carru C, Franceschi C, Baggio G. Family clustering in Sardinian longevity: a genealogical approach. Exp Gerontol 2006; 41(8): 727–736

[14]

The Italian Multicentric Study on Centenarians. Epidemiological and socioeconomic aspects of Italian centenarians. Arch Gerontol Geriatr 1997; 25(2): 149–157

[15]

Terry DF, Wilcox MA, McCormick MA, Pennington JY, Schoenhofen EA, Andersen SL, Perls TT. Lower all-cause, cardiovascular, and cancer mortality in centenarians’ offspring. J Am Geriatr Soc 2004; 52(12): 2074–2076

[16]

Rozing MP, Westendorp RGJ, De Craen AJM, Frölich M, De Goeij MCM, Heijmans BT, Beekman M, Wijsman CA, Mooijaart SP, Blauw G, Slagboom PE, Van Heemst D, on behalf of the Leiden Longevity Study Group. Favorable glucose tolerance and lower prevalence of metabolic syndrome in offspring without diabetes mellitus of nonagenarian siblings: the Leiden Longevity Study. J Am Geriatr Soc 2010; 58(3): 564–569

[17]

Gueresi P, Miglio R, Monti D, Mari D, Sansoni P, Caruso C, Bonafede E, Bucci L, Cevenini E, Ostan R, Palmas MG, Pini E, Scurti M, Franceschi C. Does the longevity of one or both parents influence the health status of their offspring. Exp Gerontol 2013; 48(4): 395–400

[18]

Adams ER, Nolan VG, Andersen SL, Perls TT, Terry DF. Centenarian offspring: start healthier and stay healthier. J Am Geriatr Soc 2008; 56(11): 2089–2092

[19]

Givens JL, Frederick M, Silverman L, Anderson S, Senville J, Silver M, Sebastiani P, Terry DF, Costa PT, Perls TT. Personality traits of centenarians’ offspring. J Am Geriatr Soc 2009; 57(4): 683–685

[20]

Newman AB, Glynn NW, Taylor CA, Sebastiani P, Perls TT, Mayeux R, Christensen K, Zmuda JM, Barral S, Lee JH, Simonsick EM, Walston JD, Yashin AI, Hadley E. Health and function of participants in the Long Life Family Study: a comparison with other cohorts. Aging (Albany NY) 2011; 3(1): 63–76

[21]

Atzmon G, Schechter C, Greiner W, Davidson D, Rennert G, Barzilai N. Clinical phenotype of families with longevity. J Am Geriatr Soc 2004; 52(2): 274–277

[22]

Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M, Bogan H, Joyce E, Brewster S, Kunkel L, Puca A. Life-long sustained mortality advantage of siblings of centenarians. Proc Natl Acad Sci USA 2002; 99(12): 8442–8447

[23]

Sebastiani P, Sun FX, Andersen SL, Lee JH, Wojczynski MK, Sanders JL, Yashin A, Newman AB, Perls TT. Families enriched for exceptional longevity also have increased health-span: findings from the Long Life Family Study. Front Public Health 2013; 1: 38

[24]

Perls TT, Bubrick E, Wager CG, Vijg J, Kruglyak L. Siblings of centenarians live longer. Lancet 1998; 351(9115): 1560

[25]

Hitt R, Young-Xu Y, Silver M, Perls T. Centenarians: the older you get, the healthier you have been. Lancet 1999; 354(9179): 652

[26]

Smith DW. Centenarians: human longevity outliers. Gerontologist 1997; 37(2): 200–207

[27]

Fries JF. Aging, natural death, and the compression of morbidity. N Engl J Med 1980; 303(3): 130–135

[28]

Ismail K, Nussbaum L, Sebastiani P, Andersen S, Perls T, Barzilai N, Milman S. Compression of morbidity is observed across cohorts with exceptional longevity. J Am Geriatr Soc 2016; 64(8): 1583–1591

[29]

Terry DF, Sebastiani P, Andersen SL, Perls TT. Disentangling the roles of disability and morbidity in survival to exceptional old age. Arch Intern Med 2008; 168(3): 277–283

[30]

Gondo Y, Hirose N, Arai Y, Inagaki H, Masui Y, Yamamura K, Shimizu K, Takayama M, Ebihara Y, Nakazawa S, Kitagawa K. Functional status of centenarians in Tokyo, Japan: developing better phenotypes of exceptional longevity. J Gerontol A Biol Sci Med Sci 2006; 61(3): 305–310

[31]

Evert J, Lawler E, Bogan H, Perls T. Morbidity profiles of centenarians: survivors, delayers, and escapers. J Gerontol A Biol Sci Med Sci 2003; 58(3): 232–237

[32]

Ailshire JA, Beltran-Sanchez H, Crimmins EM. Becoming centenarians: disease and functioning trajectories of older US Adults as they survive to 100. J Gerontol A Biol Sci Med Sci 2015; 70(2): 193–201

[33]

Andersen SL, Sebastiani P, Dworkis DA, Feldman L, Perls TT. Health span approximates life span among many supercentenarians: compression of morbidity at the approximate limit of life span. J Gerontol A Biol Sci Med Sci 2012; 67A(4): 395–405

[34]

Navaratnarajah A, Jackson SHD. The physiology of ageing. Medicine (Abingdon) 2017; 45(1): 6–10

[35]

Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol 2012; 22(17): R741–R752

[36]

Motta M, Bennati E, Ferlito L, Malaguarnera M, Motta L. Successful aging in centenarians: myths and reality. Arch Gerontol Geriatr 2005; 40(3): 241–251

[37]

Andersen SL, Terry DF, Wilcox MA, Babineau T, Malek K, Perls TT. Cancer in the oldest old. Mech Ageing Dev 2005; 126(2): 263–267

[38]

Nolen SC, Evans MA, Fischer A, Corrada MM, Kawas CH, Bota DA. Cancer—incidence, prevalence and mortality in the oldest-old. A comprehensive review. Mech Ageing Dev 2017; 164: 113–126

[39]

Pavlidis N, Stanta G, Audisio RA. Cancer prevalence and mortality in centenarians: a systematic review. Crit Rev Oncol Hematol 2012; 83(1): 145–152

[40]

Bonafè M, Barbi C, Storci G, Salvioli S, Capri M, Olivieri F, Valensin S, Monti D, Gonos ES, De Benedictis G, Franceschi C. What studies on human longevity tell us about the risk for cancer in the oldest old: data and hypotheses on the genetics and immunology of centenarians. Exp Gerontol 2002; 37(10-11): 1263–1271

[41]

Pompei F, Wilson R. Age distribution of cancer: the incidence turnover at old age. Hum Ecol Risk Assess 2001; 7(6): 1619–1650

[42]

Miyaishi O, Ando F, Matsuzawa K, Kanawa R, Isobe K. Cancer incidence in old age. Mech Ageing Dev 2000; 117(1-3): 47–55

[43]

Smith DWE. Cancer mortality at very old ages. Cancer 1996; 77(7): 1367–1372

[44]

Terry DF, Wilcox MA, McCormick MA, Perls TT. Cardiovascular disease delay in centenarian offspring. J Gerontol A Biol Sci Med Sci 2004; 59(4): 385–389

[45]

Paolisso G, Gambardella A, Ammendola S, D’Amore A, Balbi V, Varricchio M, D’Onofrio F. Glucose tolerance and insulin action in healthy centenarians. Am J Physiol 1996; 270(5 Pt 1): E890–E894

[46]

Andersen SL. Centenarians as models of resistance and resilience to Alzheimer’s disease and related dementias. Adv Geriatr Med Res 2020; 2(3): e200018

[47]

Andersen-Ranberg K, Vasegaard L, Jeune B. Dementia is not inevitable: a population-based study of Danish centenarians. J Gerontol B Psychol Sci Soc Sci 2001; 56(3): P152–P159

[48]

Yang Z, Slavin MJ, Sachdev PS. Dementia in the oldest old. Nat Rev Neurol 2013; 9(7): 382–393

[49]

Gareri P, Lacava R, Rossi MG, Iorio C, Galasso MA, Pansini L, Curti A, Mercurio M, Olivo D, Mattace R. Hypertension in a group of centenarians. Arch Gerontol Geriatr 1996; 22: 373–376

[50]

Tesi N, van der Lee S, Hulsman M, van Schoor NM, Huisman M, Pijnenburg Y, van der Flier WM, Reinders M, Holstege H. Cognitively healthy centenarians are genetically protected against Alzheimer’s disease. Alzheimers Dement 2024; 20(6): 3864–3875

[51]

Gueresi P, Troiano L, Minicuci N, Bonafé M, Pini G, Salvioli G, Carani C, Ferrucci L, Spazzafumo L, Olivieri F, Cavrini G, Valentini D, Franceschi C. The MALVA (MAntova LongeVA) study: an investigation on people 98 years of age and over in a province of Northern Italy. Exp Gerontol 2003; 38(10): 1189–1197

[52]

Passarino G, Calignano C, Vallone A, Franceschi C, Jeune B, Robine JM, Yashin AI, Cavalli Sforza LL, De Benedictis G. Male/female ratio in centenarians: a possible role played by population genetic structure. Exp Gerontol 2002; 37(10-11): 1283–1289

[53]

Franceschi C, Motta L, Valensin S, Rapisarda R, Franzone A, Berardelli M, Motta M, Monti D, Bonafè M, Ferrucci L, Deiana L, Pes GM, Carru C, Desole MS, Barbi C, Sartoni G, Gemelli C, Lescai F, Olivieri F, Marchegiani F, Cardelli M, Cavallone L, Gueresi P, Cossarizza A, Troiano L, Pini G, Sansoni P, Passeri G, Lisa R, Spazzafumo L, Amadio L, Giunta S, Stecconi R, Morresi R, Viticchi C, Mattace R, De Benedictis G, Baggio G. Do men and women follow different trajectories to reach extreme longevity? Italian Multicenter Study on Centenarians (IMUSCE). Aging Clin Exp Res 2000; 12(2): 77–84

[54]

Robine JM, Caselli G, Rasulo D, Cournil A. Differentials in the femininity ratio among centenarians: variations between northern and southern Italy from 1870. Popul Stud (Camb) 2006; 60(1): 99–113

[55]

Ostan R, Monti D, Gueresi P, Bussolotto M, Franceschi C, Baggio G. Gender, aging and longevity in humans: an update of an intriguing/neglected scenario paving the way to a gender-specific medicine. Clin Sci (Lond) 2016; 130(19): 1711–1725

[56]

Motta M, Maugeri D, Malaguarnera M; Italian Multicebter Study on Centenarians (IMUSCE). Centenarians in good health conditions. Arch Gerontol Geriatr 2002; 8: 209–217

[57]

Perls T, Kohler IV, Andersen S, Schoenhofen E, Pennington J, Young R, Terry D, Elo IT. Survival of parents and siblings of supercentenarians. J Gerontol A Biol Sci Med Sci 2007; 62(9): 1028–1034

[58]

Westendorp RGJ, Van Heemst D, Rozing MP, Frölich M, Mooijaart SP, Blauw G, Beekman M, Heijmans BT, De Craen AJM, Slagboom PE; Leiden Longevity Study Group. Nonagenarian siblings and their offspring display lower risk of mortality and morbidity than sporadic nonagenarians: the Leiden Longevity Study. J Am Geriatr Soc 2009; 57(9): 1634–1637

[59]

McGue M, Vaupel JW, Holm N, Harvald B. Longevity is moderately heritable in a sample of Danish twins born 1870–1880. J Gerontol 1993; 48(6): B237–B244

[60]

Herskind AM, McGue M, Holm NV, Sørensen TI, Harvald B, Vaupel JW. Vaupel. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet 1996; 97(3): 319–323

[61]

Ljungquist B, Berg S, Lanke J, McClearn GE, Pedersen NL. The effect of genetic factors for longevity: a comparison of identical and fraternal twins in the Swedish Twin Registry. J Gerontol A Biol Sci Med Sci 1998; 53A(6): M441–M446

[62]

Iachine IA, Holm NV, Harris JR, Begun AZ, Iachina MK, Laitinen M, Kaprio J, Yashin AI. How heritable is individual susceptibility to death? The results of an analysis of survival data on Danish, Swedish and Finnish twins. Twin Res 1998; 1(4): 196–205

[63]

Mitchell BD, Hsueh WC, King TM, Pollin TI, Sorkin J, Agarwala R, Schäffer AA, Shuldiner AR. Heritability of life span in the Old Order Amish. Am J Med Genet 2001; 102(4): 346–352

[64]

Hjelmborg J v B. , Iachine I, Skytthe A, Vaupel JW, McGue M, Koskenvuo M, Kaprio J, Pedersen NL, Christensen K. Genetic influence on human lifespan and longevity. Hum Genet 2006; 119(3): 312–321

[65]

Bustos V, Partridge L. Good Ol’ Fat: links between lipid signaling and longevity. Trends Biochem Sci 2017; 42(10): 812–823

[66]

Garasto S, Rose G, Derango F, Berardelli M, Corsonello A, Feraco E, Mari V, Maletta R, Bruni A, Franceschi C, Carotenuto L, De Benedictis G. The study of APOA1, APOC3 and APOA4 variability in healthy ageing people reveals another paradox in the oldest old subjects. Ann Hum Genet 2003; 67(Pt 1): 54–62

[67]

Timmers PR, Mounier N, Lall K, Fischer K, Ning Z, Feng X, Bretherick AD, Clark DW; eQTLGen Consortium; Shen X, Esko T, Kutalik Z, Wilson JF, Joshi PK. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances. Elife 2019; 8: e39856

[68]

Deelen J, Evans DS, Arking DE, Tesi N, Nygaard M, Liu X, Wojczynski MK, Biggs ML, van der Spek A, Atzmon G, Ware EB, Sarnowski C, Smith AV, Seppälä I, Cordell HJ, Dose J, Amin N, Arnold AM, Ayers KL, Barzilai N, Becker EJ, Beekman M, Blanché H, Christensen K, Christiansen L, Collerton JC, Cubaynes S, Cummings SR, Davies K, Debrabant B, Deleuze JF, Duncan R, Faul JD, Franceschi C, Galan P, Gudnason V, Harris TB, Huisman M, Hurme MA, Jagger C, Jansen I, Jylhä M, Kähönen M, Karasik D, Kardia SLR, Kingston A, Kirkwood TBL, Launer LJ, Lehtimäki T, Lieb W, Lyytikäinen LP, Martin-Ruiz C, Min J, Nebel A, Newman AB, Nie C, Nohr EA, Orwoll ES, Perls TT, Province MA, Psaty BM, Raitakari OT, Reinders MJT, Robine JM, Rotter JI, Sebastiani P, Smith J, Sørensen TIA, Taylor KD, Uitterlinden AG, van der Flier W, van der Lee SJ, van Duijn CM, van Heemst D, Vaupel JW, Weir D, Ye K, Zeng Y, Zheng W, Holstege H, Kiel DP, Lunetta KL, Slagboom PE, Murabito JM. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat Commun 2019; 10(1): 3669

[69]

Broer L, Buchman AS, Deelen J, Evans DS, Faul JD, Lunetta KL, Sebastiani P, Smith JA, Smith AV, Tanaka T, Yu L, Arnold AM, Aspelund T, Benjamin EJ, De Jager PL, Eirkisdottir G, Evans DA, Garcia ME, Hofman A, Kaplan RC, Kardia SLR, Kiel DP, Oostra BA, Orwoll ES, Parimi N, Psaty BM, Rivadeneira F, Rotter JI, Seshadri S, Singleton A, Tiemeier H, Uitterlinden AG, Zhao W, Bandinelli S, Bennett DA, Ferrucci L, Gudnason V, Harris TB, Karasik D, Launer LJ, Perls TT, Slagboom PE, Tranah GJ, Weir DR, Newman AB, van Duijn CM, Murabito JM. GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. J Gerontol A Biol Sci Med Sci 2015; 70(1): 110–118

[70]

Schupf N, Barral S, Perls T, Newman A, Christensen K, Thyagarajan B, Province M, Rossi WK, Mayeux R. Apolipoprotein E and familial longevity. Neurobiol Aging 2013; 34(4): 1287–1291

[71]

Ryu S, Atzmon G, Barzilai N, Raghavachari N, Suh Y. Genetic landscape of APOE in human longevity revealed by high-throughput sequencing. Mech Ageing Dev 2016; 155: 7–9

[72]

Schächter F, Faure-Delanef L, Guénot F, Rouger H, Froguel P, Lesueur-Ginot L, Cohen D. Genetic associations with human longevity at the APOE and ACE loci. Nat Genet 1994; 6(1): 29–32

[73]

Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261(5123): 921–923

[74]

Bennet AM, Di Angelantonio E, Ye Z, Wensley F, Dahlin A, Ahlbom A, Keavney B, Collins R, Wiman B, de Faire U, Danesh J. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA 2007; 298(11): 1300–1311

[75]

Varcasia O, Garasto S, Rizza T, Andersen-Ranberg K, Jeune B, Bathum L, Andreev K, Tan Q, Yashin AI, Bonafe M, Franceschi C, De Benedictis G. Replication studies in longevity: puzzling findings in Danish centenarians at the 3′ APOB–VNTR locus. Ann Hum Genet 2001; 65(4): 371–376

[76]

Li Y, Huang Y, Liang X, Long B, Chen S, Lian J, Wei Y, Zhang Z, Qin J. Apolipoprotein C-I. polymorphism and its association with serum lipid levels and longevity in the Bama population. Int J Environ Res Public Health 2017; 14(5): 505

[77]

Atzmon G, Rincon M, Schechter CB, Shuldiner AR, Lipton RB, Bergman A, Barzilai N. Lipoprotein genotype and conserved pathway for exceptional longevity in humans. PLoS Biol 2006; 4(4): e113

[78]

Bartke A, Brannan S, Hascup E, Hascup K, Darcy J. Energy metabolism and aging. World J Mens Health 2021; 39(2): 222–232

[79]

Barbieri M, Bonafè M, Franceschi C, Paolisso G. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol 2003; 285(5): E1064–E1071

[80]

Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science 2003; 299(5611): 1346–1351

[81]

Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 2004; 363(9418): 1346–1353

[82]

Andreassen M, Raymond I, Kistorp C, Hildebrandt P, Faber J, Kristensen . IGF1 as predictor of all cause mortality and cardiovascular disease in an elderly population. Eur J Endocrinol 2009; 160(1): 25–31

[83]

Milman S, Atzmon G, Huffman DM, Wan J, Crandall JP, Cohen P, Barzilai N. Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell 2014; 13(4): 769–771

[84]

Arai Y, Hirose N, Yamamura K, Shimizu K, Takayama M, Ebihara Y, Osono Y. Serum insulin-like growth factor-1 in centenarians: implications of IGF-1 as a rapid turnover protein. J Gerontol A Biol Sci Med Sci 2001; 56(2): M79–M82

[85]

Arai Y, Takayama M, Gondo Y, Inagaki H, Yamamura K, Nakazawa S, Kojima T, Ebihara Y, Shimizu K, Masui Y, Kitagawa K, Takebayashi T, Hirose N. Adipose endocrine function, insulin-like growth factor-1 axis, and exceptional survival beyond 100 years of age. J Gerontol A Biol Sci Med Sci 2008; 63(11): 1209–1218

[86]

Bonafè M, Barbieri M, Marchegiani F, Olivieri F, Ragno E, Giampieri C, Mugianesi E, Centurelli M, Franceschi C, Paolisso G. Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab 2003; 88(7): 3299–3304

[87]

Suh Y, Atzmon G, Cho MO, Hwang D, Liu B, Leahy DJ, Barzilai N, Cohen P. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci USA 2008; 105(9): 3438–3442

[88]

Hsin H, Kenyon C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 1999; 399(6734): 362–366

[89]

Mukhopadhyay A, Oh SW, Tissenbaum HA. Worming pathways to and from DAF-16/FOXO. Exp Gerontol 2006; 41(10): 928–934

[90]

Davy PMC, Allsopp RC, Donlon TA, Morris BJ, Willcox DC, Willcox BJ. FOXO3 and exceptional longevity: insights from Hydra to humans. Curr Top Dev Biol 2018; 127: 193–212

[91]

Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, Masaki KH, Willcox DC, Rodriguez B, Curb JD. FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 2008; 105(37): 13987–13992

[92]

Anselmi CV, Malovini A, Roncarati R, Novelli V, Villa F, Condorelli G, Bellazzi R, Puca AA. Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res 2009; 12(2): 95–104

[93]

Flachsbart F, Caliebe A, Kleindorp R, Blanché H, von Eller-Eberstein H, Nikolaus S, Schreiber S, Nebel A. Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci USA 2009; 106(8): 2700–2705

[94]

Li Y, Wang WJ, Cao H, Lu J, Wu C, Hu FY, Guo J, Zhao L, Yang F, Zhang YX, Li W, Zheng GY, Cui H, Chen X, Zhu Z, He H, Dong B, Mo X, Zeng Y, Tian XL. Genetic association of FOXO1A and FOXO3A with longevity trait in Han Chinese populations. Hum Mol Genet 2009; 18(24): 4897–4904

[95]

Zhao Y, Liu YS. Longevity factor FOXO3: a key regulator in aging-related vascular diseases. Front Cardiovasc Med 2021; 8: 778674

[96]

Charitou P, Burgering BMT. Forkhead box(O) in control of reactive oxygen species and genomic stability to ensure healthy lifespan. Antioxid Redox Signal 2013; 19(12): 1400–1419

[97]

Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ Jr, DiStefano PS, Chiang LW, Greenberg ME. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 2002; 296(5567): 530–534

[98]

Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007; 6(6): 458–471

[99]

van Grevenynghe J, Cubas RA, DaFonseca S, Metcalf T, Tremblay CL, Trautmann L, Sekaly RP, Schatzle J, Haddad EK. Foxo3a: an integrator of immune dysfunction during HIV infection. Cytokine Growth Factor Rev 2012; 23(4-5): 215–221

[100]

Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 2010; 5(1): 253–295

[101]

Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13(19): 2570–2580

[102]

Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001; 410(6825): 227–230

[103]

Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 2004; 101(45): 15998–16003

[104]

Hadar A, Milanesi E, Walczak M, Puzianowska-Kuźnicka M, Kuźnicki J, Squassina A, Niola P, Chillotti C, Attems J, Gozes I, Gurwitz D. SIRT1, miR-132 and miR-212 link human longevity to Alzheimer’s disease. Sci Rep 2018; 8(1): 8465

[105]

Rose G, Dato S, Altomare K, Bellizzi D, Garasto S, Greco V, Passarino G, Feraco E, Mari V, Barbi C, BonaFe M, Franceschi C, Tan Q, Boiko S, Yashin AI, De Benedictis G. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol 2003; 38(10): 1065–1070

[106]

Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, Greco V, Maggiolini M, Feraco E, Mari V, Franceschi C, Passarino G, De Benedictis G. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 2005; 85(2): 258–263

[107]

Simon M, Yang J, Gigas J, Earley EJ, Hillpot E, Zhang L, Zagorulya M, Tombline G, Gilbert M, Yuen SL, Pope A, Van Meter M, Emmrich S, Firsanov D, Athreya A, Biashad SA, Han J, Ryu S, Tare A, Zhu Y, Hudgins A, Atzmon G, Barzilai N, Wolfe A, Moody K, Garcia BA, Thomas DD, Robbins PD, Vijg J, Seluanov A, Suh Y, Gorbunova V. A rare human centenarian variant of SIRT6 enhances genome stability and interaction with Lamin A. EMBO J 2022; 41(21): e110393

[108]

Frohlich J, Raffaele M, Skalova H, Leire E, Pata I, Pata P, Gorbunova V, Vinciguerra M. Human centenarian-associated SIRT6 mutants modulate hepatocyte metabolism and collagen deposition in multilineage hepatic 3D spheroids. Geroscience 2023; 45(2): 1177–1196

[109]

Cesari M, Penninx BWJH, Pahor M, Lauretani F, Corsi AM, Williams GR, Guralnik JM, Ferrucci L. Inflammatory markers and physical performance in older persons: the InCHIANTI study. J Gerontol A Biol Sci Med Sci 2004; 59(3): M242–M248

[110]

Salvioli S, Capri M, Valensin S, Tieri P, Monti D, Ottaviani E, Franceschi C. Inflamm-aging, cytokines and aging: state of the art, new hypotheses on the role of mitochondria and new perspectives from systems biology. Curr Pharm Des 2006; 12(24): 3161–3171

[111]

Ferrucci L, Harris TB, Guralnik JM, Tracy RP, Corti M, Cohen HJ, Penninx B, Pahor M, Wallace R, Havlik RJ. Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc 1999; 47(6): 639–646

[112]

Olivieri F, Bonafè M, Cavallone L, Giovagnetti S, Marchegiani F, Cardelli M, Mugianesi E, Giampieri C, Moresi R, Stecconi R, Lisa R, Franceschi C. The −174 C/G locus affects in vitro/in vivo IL-6 production during aging. Exp Gerontol 2002; 37(2-3): 309–314

[113]

Bonafè M, Olivieri F, Cavallone L, Giovagnetti S, Mayegiani F, Cardelli M, Pieri C, Marra M, Antonicelli R, Lisa R, Rizzo MR, Paolisso G, Monti D, Franceschi C. A gender–dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity. Eur J Immunol 2001; 31(8): 2357–2361

[114]

Rea IM, Ross OA, Armstrong M, McNerlan S, Alexander DH, Curran MD, Middleton D. Interleukin-6-gene C/G 174 polymorphism in nonagenarian and octogenarian subjects in the BELFAST study. Reciprocal effects on IL-6, soluble IL-6 receptor and for IL-10 in serum and monocyte supernatants. Mech Ageing Dev 2003; 124(4): 555–561

[115]

Carrieri G, Marzi E, Olivieri F, Marchegiani F, Cavallone L, Cardelli M, Giovagnetti S, Stecconi R, Molendini C, Trapassi C, De Benedictis G, Kletsas D, Franceschi C. The G/C915 polymorphism of transforming growth factor β1 is associated with human longevity: a study in Italian centenarians. Aging Cell 2004; 3(6): 443–448

[116]

Lio D, Scola L, Crivello A, Colonna-Romano G, Candore G, Bonafè M, Cavallone L, Franceschi C, Caruso C. Gender-specific association between −1082 IL-10 promoter polymorphism and longevity. Genes Immun 2002; 3(1): 30–33

[117]

Balistreri CR, Candore G, Colonna-Romano G, Lio D, Caruso M, Hoffmann E, Franceschi C, Caruso C. Role of Toll-like receptor 4 in acute myocardial infarction and longevity. JAMA 2004; 292(19): 2339–2340

[118]

Lio D, Scola L, Crivello A, Bonafe ÁM, Franceschi C, Olivieri F, Colonna-Romano G, Candore G, Caruso C. Allele frequencies of +874T→A single nucleotide polymorphism at the first intron of interferon-γ gene in a group of Italian centenarians. Exp Gerontol 2002; 37(2-3): 315–319

[119]

Morley A. Somatic mutation and aging. Ann N Y Acad Sci 1998; 854(1): 20–22

[120]

Jones IM, Thomas CB, Tucker B, Thompson CL, Pleshanov P, Vorobtsova I, Moore DH II. Impact of age and environment on somatic mutation at the hprt gene of T lymphocytes in humans. Mutat Res 1995; 338(1-6): 129–139

[121]

Franzke B, Neubauer O, Wagner KH. Super DNAging—new insights into DNA integrity, genome stability and telomeres in the oldest old. Mutat Res Rev Mutat Res 2015; 766: 48–57

[122]

Chevanne M, Calia C, Zampieri M, Cecchinelli B, Caldini R, Monti D, Bucci L, Franceschi C, Caiafa P. Oxidative DNA damage repair and parp 1 and parp 2 expression in Epstein-Barr virus-immortalized B lymphocyte cells from young subjects, old subjects, and centenarians. Rejuvenation Res 2007; 10(2): 191–204

[123]

Humphreys V, Martin RM, Ratcliffe B, Duthie S, Wood S, Gunnell D, Collins AR. Age-related increases in DNA repair and antioxidant protection: a comparison of the Boyd Orr Cohort of elderly subjects with a younger population sample. Age Ageing 2007; 36(5): 521–526

[124]

Nebel A, Flachsbart F, Till A, Caliebe A, Blanché H, Arlt A, Häsler R, Jacobs G, Kleindorp R, Franke A. A functional EXO1 promoter variant is associated with prolonged life expectancy in centenarians. Mech Ageing Dev 2009; 130(10): 691–699

[125]

van Heemst D, Mooijaart SP, Beekman M, Schreuder J, de Craen AJM, Brandt BW, Slagboom PE, Westendorp RGJ. Variation in the human TP53 gene affects old age survival and cancer mortality. Exp Gerontol 2005; 40(1-2): 11–15

[126]

Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86(4): 1343–1346

[127]

Frederiksen H, Gaist D, Bathum L, Andersen K, Mcgue M, Vaupel JW, Christensen K. Angiotensin I-converting enzyme (ACE) gene polymorphism in relation to physical performance, cognition and survival—a follow-up study of elderly Danish twins. Ann Epidemiol 2003; 13(1): 57–65

[128]

Luft FC. Bad genes, good people, association, linkage, longevity and the prevention of cardiovascular disease. Clin Exp Pharmacol Physiol 1999; 26(7): 576–579

[129]

Danser AJ, Schalekamp MA, Bax WA, van den Brink AM, Saxena PR, Riegger GA, Schunkert H. Angiotensin-converting enzyme in the human heart: effect of the deletion/insertion polymorphism. Circulation 1995; 92(6): 1387–1388

[130]

You FJ, Shen DM. Association between angiotensin-converting enzyme insertion/deletion polymorphisms and the risk of heart disease: an updated meta-analysis. Genet Mol Res 2016; 15(1): 15017194

[131]

Zhao J, Qin X, Li S, Zeng Z. Association between the ACE I/D polymorphism and risk of ischemic stroke: an updated meta-analysis of 47, 026 subjects from 105 case–control studies. J Neurol Sci 2014; 345(1-2): 37–47

[132]

Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol 2005; 45(1): 51–88

[133]

Christiansen L, Brasch-Andersen C, Bathum L, Kruse T, Christensen K. A longitudinal study of the effect of GSTT1 and GSTM1 gene copy number on survival. Mech Ageing Dev 2006; 127(7): 597–599

[134]

Taioli E, Mari D, Franceschi C, Bonafè M, Monti D, Bertolini S, Marinelli D, Garte S. Polymorphisms of drug-metabolizing enzymes in healthy nonagenarians and centenarians: difference at GSTT1 locus. Biochem Biophys Res Commun 2001; 280(5): 1389–1392

[135]

Yamamura K, Hirose N, Arai Y. Contribution of glutathione S-transferase M1 to longevity. J Am Geriatr Soc 2001; 49(3): 338–339

[136]

Mackness B, Durrington PN, Mackness MI. Human serum paraoxonase. Gen Pharmacol 1998; 31(3): 329–336

[137]

Durrington PN, Bashir B, Soran H. Paraoxonase 1 and atherosclerosis. Front Cardiovasc Med 2023; 10: 1065967

[138]

Bonafè M, Marchegiani F, Cardelli M, Olivieri F, Cavallone L, Giovagnetti S, Pieri C, Marra M, Antonicelli R, Troiano L, Gueresi P, Passeri G, Berardelli M, Paolisso G, Barbieri M, Tesei S, Lisa R, De Benedictis G, Franceschi C. Genetic analysis of paraoxonase (PON1) locus reveals an increased frequency of Arg192 allele in centenarians. Eur J Hum Genet 2002; 10(5): 292–296

[139]

Rea IM, McKeown PP, McMaster D, Young IS, Patterson C, Savage MJ, Belton C, Marchegiani F, Olivieri F, Bonafe M, Franceschi C. Paraoxonase polymorphisms PON1 192 and 55 and longevity in Italian centenarians and Irish nonagenarians. A pooled analysis. Exp Gerontol 2004; 39(4): 629–635

[140]

Lescai F, Marchegiani F, Franceschi C. PON1 is a longevity gene: results of a meta-analysis. Ageing Res Rev 2009; 8(4): 277–284

[141]

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell 2023; 186(2): 243–278

[142]

Brand FN, Kiely DK, Kannel WB, Myers RH. Family patterns of coronary heart disease mortality: the Framingham Longevity Study. J Clin Epidemiol 1992; 45(2): 169–174

[143]

De Benedictis G, Rose G, Carrieri G, De Luca M, Falcone E, Passarino G, Bonafe M, Monti D, Baggio G, Bertolini S, Mari D, Mattace R, Franceschi C. Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB J 1999; 13(12): 1532–1536

[144]

Tanaka M, Gong JS, Zhang J, Yoneda M, Yagi K. Mitochondrial genotype associated with longevity. Lancet 1998; 351(9097): 185–186

[145]

Courtenay MD, Gilbert JR, Jiang L, Cummings AC, Gallins PJ, Caywood L, Reinhart-Mercer L, Fuzzell D, Knebusch C, Laux R, McCauley JL, Jackson CE, Pericak-Vance MA, Haines JL, Scott WK. Mitochondrial haplogroup X is associated with successful aging in the Amish. Hum Genet 2012; 131(2): 201–208

[146]

Niemi AK, Hervonen A, Hurme M, Karhunen P, Jylhä M, Majamaa K. Mitochondrial DNA polymorphisms associated with longevity in a Finnish population. Hum Genet 2003; 112(1): 29–33

[147]

Ross O. Mitochondrial DNA polymorphism: its role in longevity of the Irish population. Exp Gerontol 2001; 36(7): 1161–1178

[148]

Alexe G, Fuku N, Bilal E, Ueno H, Nishigaki Y, Fujita Y, Ito M, Arai Y, Hirose N, Bhanot G, Tanaka M. Enrichment of longevity phenotype in mtDNA haplogroups D4b2b, D4a, and D5 in the Japanese population. Hum Genet 2007; 121(3-4): 347–356

[149]

Dato S, Passarino G, Rose G, Altomare K, Bellizzi D, Mari V, Feraco E, Franceschi C, De Benedictis G. Association of the mitochondrial DNA haplogroup J with longevity is population specific. Eur J Hum Genet 2004; 12(12): 1080–1082

[150]

Raule N, Sevini F, Li S, Barbieri A, Tallaro F, Lomartire L, Vianello D, Montesanto A, Moilanen JS, Bezrukov V, Blanché H, Hervonen A, Christensen K, Deiana L, Gonos ES, Kirkwood TBL, Kristensen P, Leon A, Pelicci PG, Poulain M, Rea IM, Remacle J, Robine JM, Schreiber S, Sikora E, Eline Slagboom P, Spazzafumo L, Antonietta Stazi M, Toussaint O, Vaupel JW, Rose G, Majamaa K, Perola M, Johnson TE, Bolund L, Yang H, Passarino G, Franceschi C. The co-occurrence of mtDNA mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific. Aging Cell 2014; 13(3): 401–407

[151]

Zhang J, Asin-Cayuela J, Fish J, Michikawa Y, Bonafé M, Olivieri F, Passarino G, De Benedictis G, Franceschi C, Attardi G. Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proc Natl Acad Sci USA 2003; 100(3): 1116–1121

[152]

Niemi AK, Moilanen JS, Tanaka M, Hervonen A, Hurme M, Lehtimäki T, Arai Y, Hirose N, Majamaa K. A combination of three common inherited mitochondrial DNA polymorphisms promotes longevity in Finnish and Japanese subjects. Eur J Hum Genet 2005; 13(2): 166–170

[153]

Rose G, Passarino G, Carrieri G, Altomare K, Greco V, Bertolini S, Bonafè M, Franceschi C, De Benedictis G. Paradoxes in longevity: sequence analysis of mtDNA haplogroup J in centenarians. Eur J Hum Genet 2001; 9(9): 701–707

[154]

Stewart JA, Chaiken MF, Wang F, Price CM. Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation. Mutat Res 2012; 730(1–2): 12–19

[155]

Blackburn EH. Switching and signaling at the telomere. Cell 2001; 106(6): 661–673

[156]

Shay JW, Wright WE. Telomeres and telomerase: implications for cancer and aging. Radiat Res 2001; 155(1): 188–193

[157]

Joeng KS, Song EJ, Lee KJ, Lee J. Long lifespan in worms with long telomeric DNA. Nat Genet 2004; 36(6): 607–611

[158]

Terry DF, Nolan VG, Andersen SL, Perls TT, Cawthon R. Association of longer telomeres with better health in centenarians. J Gerontol A Biol Sci Med Sci 2008; 63(8): 809–812

[159]

Atzmon G, Cho M, Cawthon RM, Budagov T, Katz M, Yang X, Siegel G, Bergman A, Huffman DM, Schechter CB, Wright WE, Shay JW, Barzilai N, Govindaraju DR, Suh Y. Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proc Natl Acad Sci 2010; 107(Suppl 1): 1710–1717

[160]

Kim S, Bi X, Czarny-Ratajczak M, Dai J, Welsh DA, Myers L, Welsch MA, Cherry KE, Arnold J, Poon LW, Jazwinski SM. Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology 2012; 13(2): 119–131

[161]

Soerensen M, Thinggaard M, Nygaard M, Dato S, Tan Q, Hjelmborg J, Andersen-Ranberg K, Stevnsner T, Bohr VA, Kimura M, Aviv A, Christensen K, Christiansen L. Genetic variation in TERT and TERC and human leukocyte telomere length and longevity: a cross-sectional and longitudinal analysis. Aging Cell 2012; 11(2): 223–227

[162]

Garatachea N, Marín PJ, Santos-Lozano A, Sanchis-Gomar F, Emanuele E, Lucia A. The ApoE gene is related with exceptional longevity: a systematic review and meta-analysis. Rejuvenation Res 2015; 18(1): 3–13

[163]

Deelen J, Beekman M, Uh H, Helmer Q, Kuningas M, Christiansen L, Kremer D, Van Der Breggen R, Suchiman HED, Lakenberg N, Van Den Akker EB, Passtoors WM, Tiemeier H, Van Heemst D, De Craen AJ, Rivadeneira F, De Geus EJ, Perola M, Van Der Ouderaa FJ, Gunn DA, Boomsma DI, Uitterlinden AG, Christensen K, Van Duijn CM, Heijmans BT, Houwing-Duistermaat JJ, Westendorp RGJ, Slagboom PE. Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited. Aging Cell 2011; 10(4): 686–698

[164]

Soerensen M, Dato S, Christensen K, McGue M, Stevnsner T, Bohr VA, Christiansen L. Replication of an association of variation in the FOXO3A gene with human longevity using both case–control and longitudinal data. Aging Cell 2010; 9(6): 1010–1017

[165]

Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D, Mangino M, Zhai G, Zhang F, Valdes A, Shin SY, Dempster EL, Murray RM, Grundberg E, Hedman AK, Nica A, Small KS; MuTHER Consortium; Dermitzakis ET, McCarthy MI, Mill J, Spector TD, Deloukas P. Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet 2012; 8(4): e1002629

[166]

Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005; 102(30): 10604–10609

[167]

Bellizzi D, D’Aquila P, Montesanto A, Corsonello A, Mari V, Mazzei B, Lattanzio F, Passarino G. Global DNA methylation in old subjects is correlated with frailty. Age (Omaha) 2012; 34(1): 169–179

[168]

Wilson VL, Smith RA, Ma S, Cutler RG. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 1987; 262(21): 9948–9951

[169]

Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K, Miyazaki T, Ogura C, Okazaki Y, Jinno Y. Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet 2004; 68(3): 196–204

[170]

Johansson Å, Enroth S, Gyllensten U. Continuous aging of the human DNA methylome throughout the human lifespan. PLoS One 2013; 8(6): e67378

[171]

Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, Sparrow D, Vokonas P, Baccarelli A. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev 2009; 130(4): 234–239

[172]

Gentilini D, Mari D, Castaldi D, Remondini D, Ogliari G, Ostan R, Bucci L, Sirchia SM, Tabano S, Cavagnini F, Monti D, Franceschi C, Di Blasio AM, Vitale G. Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians’ offspring. Age (Omaha) 2013; 35(5): 1961–1973

[173]

Horvath S, Pirazzini C, Bacalini MG, Gentilini D, Di Blasio AM, Delledonne M, Mari D, Arosio B, Monti D, Passarino G, De Rango F, D’Aquila P, Giuliani C, Marasco E, Collino S, Descombes P, Garagnani P, Franceschi C. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY) 2015; 7(12): 1159–1170

[174]

Armstrong NJ, Mather KA, Thalamuthu A, Wright MJ, Trollor JN, Ames D, Brodaty H, Schofield PR, Sachdev PS, Kwok JB. Aging, exceptional longevity and comparisons of the Hannum and Horvath epigenetic clocks. Epigenomics 2017; 9(5): 689–700

[175]

Gutman D, Rivkin E, Fadida A, Sharvit L, Hermush V, Rubin E, Kirshner D, Sabin I, Dwolatzky T, Atzmon G. Exceptionally long-lived individuals (ELLI) demonstrate slower aging rate calculated by DNA methylation clocks as possible modulators for healthy longevity. Int J Mol Sci 2020; 21(2): 615

[176]

Daunay A, Hardy LM, Bouyacoub Y, Sahbatou M, Touvier M, Blanché H, Deleuze JF, How-Kit A. Centenarians consistently present a younger epigenetic age than their chronological age with four epigenetic clocks based on a small number of CpG sites. Aging (Albany NY) 2022; 14(19): 7718–7733

[177]

Komaki S, Nagata M, Arai E, Otomo R, Ono K, Abe Y, Ohmomo H, Umekage S, Shinozaki NO, Hachiya T, Sutoh Y, Otsuka-Yamasaki Y, Arai Y, Hirose N, Yoneyama A, Okano H, Sasaki M, Kanai Y, Shimizu A. Epigenetic profile of Japanese supercentenarians: a cross-sectional study. Lancet Healthy Longev 2023; 4(2): e83–e90

[178]

Xiao FH, Wang HT, Chen XQ, Ge MX, Yan D, Yang XL, Yang LQ, Lin R, Guo RH, Zhang W, Tang NLS, He Y, Zhou J, Cai WW, Kong QP. Hypermethylation in H3K9me3 regions characterizes the centenarian methylomes in healthy aging. Natl Sci Rev 2023; 10(6): nwad067

[179]

Gombar S, Jung HJ, Dong F, Calder B, Atzmon G, Barzilai N, Tian XL, Pothof J, Hoeijmakers JH, Campisi J, Vijg J, Suh Y. Comprehensive microRNA profiling in B-cells of human centenarians by massively parallel sequencing. BMC Genomics 2012; 13(1): 353

[180]

Jiang J, Cheng L, Yan L, Ge M, Yang L, Ying H, Kong Q. Decoding the role of long noncoding RNAs in the healthy aging of centenarians. Brief Bioinform 2021; 22(5): bbaa439

[181]

Paolisso G, Gambardella A, Ammendola S, Tagliamonte MR, Rizzo MR, Capurso A, Varricchio M. Preserved antilipolytic insulin action is associated with a less atherogenic plasma lipid profile in healthy centenarians. J Am Geriatr Soc 1997; 45(12): 1504–1509

[182]

Nebel A, Kleindorp R, Caliebe A, Nothnagel M, Blanché H, Junge O, Wittig M, Ellinghaus D, Flachsbart F, Wichmann HE, Meitinger T, Nikolaus S, Franke A, Krawczak M, Lathrop M, Schreiber S. A genome-wide association study confirms APOE as the major gene influencing survival in long-lived individuals. Mech Ageing Dev 2011; 132(6-7): 324–330

[183]

Sebastiani P, Solovieff N, DeWan AT, Walsh KM, Puca A, Melista E, Andersen S, Dworkis DA, Wilk JB, Myers RH, Steinberg MH, Montano M, Baldwin CT, Hoh J, Perls TT. Genetic signatures of exceptional longevity in humans. PLoS One 2012; 7(1): e29848

[184]

Barzilai N, Atzmon G, Schechter C, Schaefer EJ, Cupples AL, Lipton R, Cheng S, Shuldiner AR. Unique lipoprotein phenotype and genotype associated with exceptional longevity. JAMA 2003; 290(15): 2030–2040

[185]

Soerensen M, Dato S, Tan Q, Thinggaard M, Kleindorp R, Beekman M, Suchiman HED, Jacobsen R, McGue M, Stevnsner T, Bohr VA, De Craen AJM, Westendorp RGJ, Schreiber S, Slagboom PE, Nebel A, Vaupel JW, Christensen K, Christiansen L. Evidence from case–control and longitudinal studies supports associations of genetic variation in APOE, CETP, and IL6 with human longevity. Age (Omaha) 2013; 35(2): 487–500

[186]

Atzmon G, Pollin TI, Crandall J, Tanner K, Schechter CB, Scherer PE, Rincon M, Siegel G, Katz M, Lipton RB, Shuldiner AR, Barzilai N. Adiponectin levels and genotype: a potential regulator of life span in humans. J Gerontol A Biol Sci Med Sci 2008; 63(5): 447–453

[187]

Gonzalez-Covarrubias V. Lipidomics in longevity and healthy aging. Biogerontology 2013; 14(6): 663–672

[188]

Ferrannini E, Vichi S, Beck-Nielsen H, Laakso M, Paolisso G, Smith U. Insulin action and age: European Group for the Study of Insulin Resistance (EGIR). Diabetes 1996; 45(7): 947–953

[189]

Barbieri M. Glucose regulation and oxidative stress in healthy centenarians. Exp Gerontol 2003; 38(1–2): 137–143

[190]

Mezzetti A, Lapenna D, Romano F, Costantini F, Pierdomenico SD, De Cesare D, Cuccurullo F, Riario-Sforza G, Zuliani G, Fellin R. Systemic oxidative stress and its relationship with age and illness. Associazione Medica “Sabin”. J Am Geriatr Soc 1996; 44(7): 823–827

[191]

Giugliano D, Paolisso G, Ceriello A. Oxidative stress and diabetic vascular complications. Diabetes Care 1996; 19(3): 257–267

[192]

Mecocci P, Polidori MC, Troiano L, Cherubini A, Cecchetti R, Pini G, Straatman M, Monti D, Stahl W, Sies H, Franceschi C, Senin U. Plasma antioxidants and longevity: a study on healthy centenarians. Free Radic Biol Med 2000; 28(8): 1243–1248

[193]

Paolisso G, Di Maro G, Galzerano D, Cacciapuoti F, Varricchio G, Varricchio M, D’Onofrio F. Pharmacological doses of vitamin E and insulin action in elderly subjects. Am J Clin Nutr 1994; 59(6): 1291–1296

[194]

Buffenstein R, Pinto M. Endocrine function in naturally long-living small mammals. Mol Cell Endocrinol 2009; 299(1): 101–111

[195]

Brown-Borg HM, Borg KE, Meliska CJ, Bartke A. Dwarf mice and the ageing process. Nature 1996; 384(6604): 33

[196]

Bano A, Dhana K, Chaker L, Kavousi M, Ikram MA, Mattace-Raso FUS, Peeters RP, Franco OH. Association of thyroid function with life expectancy with and without cardiovascular disease: the Rotterdam Study. JAMA Intern Med 2017; 177(11): 1650–1657

[197]

Ravaglia G, Forti P, Maioli F, Nesi B, Pratelli L, Savarino L, Cucinotta D, Cavalli G. Blood micronutrient and thyroid hormone concentrations in the oldest-old. J Clin Endocrinol Metab 2000; 85(6): 2260–2265

[198]

Corsonello A, Montesanto A, Berardelli M, De Rango F, Dato S, Mari V, Mazzei B, Lattanzio F, Passarino G. A cross-section analysis of FT3 age-related changes in a group of old and oldest-old subjects, including centenarians’ relatives, shows that a down-regulated thyroid function has a familial component and is related to longevity. Age Ageing 2010; 39(6): 723–727

[199]

Atzmon G, Barzilai N, Hollowell JG, Surks MI, Gabriely I. Extreme longevity is associated with increased serum thyrotropin. J Clin Endocrinol Metab 2009; 94(4): 1251–1254

[200]

He Y, Chen X, Yan D, Xiao F, Liu Y, Lin R, Liao X, Cai W, Kong Q. Thyroid function decreases with age and may contribute to longevity in Chinese centenarians’ families. J Am Geriatr Soc 2015; 63(7): 1474–1476

[201]

Atzmon G, Barzilai N, Surks MI, Gabriely I. Genetic predisposition to elevated serum thyrotropin is associated with exceptional longevity. J Clin Endocrinol Metab 2009; 94(12): 4768–4775

[202]

Rodon J, DeSantos V, Ferry RJ Jr, Kurzrock R. Early drug development of inhibitors of the insulin-like growth factor-I receptor pathway: lessons from the first clinical trials. Mol Cancer Ther 2008; 7(9): 2575–2588

[203]

Baranowska B, Wolinska-Witort E, Bik W, Baranowska-Bik A, Martynska L, Chmielowska M. Evaluation of neuroendocrine status in longevity. Neurobiol Aging 2007; 28(5): 774–783

[204]

Sandhu MS, Heald AH, Gibson JM, Cruickshank JK, Dunger DB, Wareham NJ. Circulating concentrations of insulin-like growth factor-I and development of glucose intolerance: a prospective observational study. Lancet 2002; 359(9319): 1740–1745

[205]

Žofková I. Pathophysiological and clinical importance of insulin-like growth factor-I with respect to bone metabolism. Physiol Res 2003; 52(6): 657–679

[206]

Trejo J, Piriz J, Llorens-Martin MV, Fernandez AM, Bolós M, LeRoith D, Nuñez A, Torres-Aleman I. Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects. Mol Psychiatry 2007; 12(12): 1118–1128

[207]

Juul A, Scheike T, Davidsen M, Gyllenborg J, Jørgensen T. Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease: a population-based case-control study. Circulation 2002; 106(8): 939–944

[208]

Ferrari E, Cravello L, Falvo F, Barili L, Solerte SB, Fioravanti M, Magri F. Neuroendocrine features in extreme longevity. Exp Gerontol 2008; 43(2): 88–94

[209]

Magri F, Sarra S, Cinchetti W, Guazzoni V, Fioravanti M, Cravello L, Ferrari E. Qualitative and quantitative changes of melatonin levels in physiological and pathological aging and in centenarians. J Pineal Res 2004; 36(4): 256–261

[210]

Horstman AM, Dillon EL, Urban RJ, Sheffield-Moore M. The role of androgens and estrogens on healthy aging and longevity. J Gerontol A Biol Sci Med Sci 2012; 67(11): 1140–1152

[211]

Fu S, Ping P, Li Y, Li B, Zhao Y, Yao Y, Zhang P. Centenarian longevity had inverse relationships with nutritional status and abdominal obesity and positive relationships with sex hormones and bone turnover in the oldest females. J Transl Med 2021; 19(1): 436

[212]

Liu Z, Li Y, Li X, Cheng F, Zhao Y, Hu H. Cross-sectional analysis of gonadal hormone expression and relevant factors in female centenarians in Hainan, China. J Cent South Univ (Medical Science)(Zhong Nan Da Xue Xue Bao Yi Xue Ban) 2022; 47(1): 45–51

[213]

Zhu Q, Fu S, Zhang Q, Tian J, Zhao Y, Yao Y. Female fertility has a negative relationship with longevity in Chinese oldest-old population: a cross-sectional study. Front Endocrinol (Lausanne) 2021; 11: 616207

[214]

Kumar RS, Goyal N. Estrogens as regulator of hematopoietic stem cell, immune cells and bone biology. Life Sci 2021; 269: 119091

[215]

Ferrini RL, Barrett-Connor E. Sex hormones and age: a cross-sectional study of testosterone and estradiol and their bioavailable fractions in community-dwelling men. Am J Epidemiol 1998; 147(8): 750–754

[216]

Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab 2001; 86(2): 724–731

[217]

Araujo AB, Wittert GA. Endocrinology of the aging male. Best Pract Res Clin Endocrinol Metab 2011; 25(2): 303–319

[218]

Aleksic S, Desai D, Ye K, Duran S, Gao T, Crandall J, Atzmon G, Barzilai N, Milman S. Integrity of hypothalamic-pituitary-testicular axis in exceptional longevity. Aging Cell 2022; 21(8): e13656

[219]

Franceschi C, Monti D, Barbieri D, Grassilli E, Troiano L, Salvioli S, Negro P, Capri M, Guido M, Azzi R, Sansoni P, Paganelli R, Fagiolo U, Baggio G, Donazzan S, Mariotti S, D’addato S, Gaddi A, Ortolani C, Cossarizza A. Immunosenescence in humans: deterioration or remodelling. Int Rev Immunol 1995; 12(1): 57–74

[220]

Sansoni P, Cossarizza A, Brianti V, Fagnoni F, Snelli G, Monti D, Marcato A, Passeri G, Ortolani C, Forti E. Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood 1993; 82(9): 2767–2773

[221]

Alonso-Fernández P, Puerto M, Maté I, Ribera JM, De La Fuente M. Neutrophils of centenarians show function levels similar to those of young adults. J Am Geriatr Soc 2008; 56(12): 2244–2251

[222]

Ershler WB, Keller ET. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 2000; 51(1): 245–270

[223]

Myśliwska J, Bryl E, Foerster J, Myśliwski A. Increase of interleukin 6 and decrease of interleukin 2 production during the ageing process are influenced by the health status. Mech Ageing Dev 1998; 100(3): 313–328

[224]

Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger WH Jr, Heimovitz H, Cohen HJ, Wallace R. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med 1999; 106(5): 506–512

[225]

Basile G, Paffumi I, D’Angelo AG, Figliomeni P, Cucinotta MD, Pace E, Ferraro M, Saitta S, Lasco A, Gangemi S. Healthy centenarians show high levels of circulating interleukin-22 (IL-22). Arch Gerontol Geriatr 2012; 54(3): 459–461

[226]

Zhou L, Ge M, Zhang Y, Wu X, Leng M, Gan C, Mou Y, Zhou J, Valencia CA, Hao Q, Zhu B, Dong B, Dong B. Centenarians alleviate inflammaging by changing the ratio and secretory phenotypes of T helper 17 and regulatory T Cells. Front Pharmacol 2022; 13: 877709

[227]

Minciullo PL, Catalano A, Mandraffino G, Casciaro M, Crucitti A, Maltese G, Morabito N, Lasco A, Gangemi S, Basile G. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz) 2016; 64(2): 111–126

[228]

Rea IM, Dellet M, Mills KI; ACUME2 Project. Living long and ageing well: is epigenomics the missing link between nature and nurture. Biogerontology 2016; 17(1): 33–54

[229]

Langille MG, Meehan CJ, Koenig JE, Dhanani AS, Rose RA, Howlett SE, Beiko RG. Microbial shifts in the aging mouse gut. Microbiome 2014; 2(1): 50

[230]

Shin J, Noh JR, Choe D, Lee N, Song Y, Cho S, Kang EJ, Go MJ, Ha SK, Chang DH, Kim JH, Kim YH, Kim KS, Jung H, Kim MH, Sung BH, Lee SG, Lee DH, Kim BC, Lee CH, Cho BK. Ageing and rejuvenation models reveal changes in key microbial communities associated with healthy ageing. Microbiome 2021; 9(1): 240

[231]

Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D, Capri M, Brigidi P, Candela M. Gut microbiota signatures of longevity. Curr Biol 2016; 26(11): 1480–1485

[232]

Franceschi C, Ostan R, Santoro A. Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets. Annu Rev Nutr 2018; 38(1): 329–356

[233]

Bárcena C, Valdés-Mas R, Mayoral P, Garabaya C, Durand S, Rodríguez F, Fernández-García MT, Salazar N, Nogacka AM, Garatachea N, Bossut N, Aprahamian F, Lucia A, Kroemer G, Freije JMP, Quirós PM, López-Otín C. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med 2019; 25(8): 1234–1242

[234]

Wang N, Li R, Lin H, Fu C, Wang X, Zhang Y, Su M, Huang P, Qian J, Jiang F, Wang H, Jiang L, Yu X, Liu J, Chen Y, Jiang Q. Enriched taxa were found among the gut microbiota of centenarians in East China. PLoS One 2019; 14(10): e0222763

[235]

Kwon G, Lee J, Lim YH. Dairy Propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system. Sci Rep 2016; 6(1): 31713

[236]

Nakagawa H, Shiozaki T, Kobatake E, Hosoya T, Moriya T, Sakai F, Taru H, Miyazaki T. Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans. Aging Cell 2016; 15(2): 227–236

[237]

Matsumoto M, Kurihara S, Kibe R, Ashida H, Benno Y. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS One 2011; 6(8): e23652

[238]

Xu R, Shang N, Li P. In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH. Anaerobe 2011; 17(5): 226–231

[239]

Smith P, Willemsen D, Popkes M, Metge F, Gandiwa E, Reichard M, Valenzano DR. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. eLife 2017; 6: e27014

[240]

Chen Y, Zhang S, Zeng B, Zhao J, Yang M, Zhang M, Li Y, Ni Q, Wu D, Li Y. Transplant of microbiota from long-living people to mice reduces aging-related indices and transfers beneficial bacteria. Aging (Albany NY) 2020; 12(6): 4778–4793

[241]

Grajeda-Iglesias C, Durand S, Daillère R, Iribarren K, Lemaitre F, Derosa L, Aprahamian F, Bossut N, Nirmalathasan N, Madeo F, Zitvogel L, Kroemer G. Oral administration of Akkermansia muciniphila elevates systemic antiaging and anticancer metabolites. Aging (Albany NY) 2021; 13(5): 6375–6405

[242]

Mair W, Goymer P, Pletcher SD, Partridge L. Demography of dietary restriction and death in Drosophila. Science 2003; 301(5640): 1731–1733

[243]

Weindruch R, Walford RL. Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science 1982; 215(4538): 1415–1418

[244]

Weindruch R, Walford RL, Fligiel S, Guthrie D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 1986; 116(4): 641–654

[245]

Lipman RD, Smith DE, Bronson RT, Blumberg J. Is late-life caloric restriction beneficial. Aging Clin Exp Res 1995; 7(2): 136–139

[246]

Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, Ingram DK, Weindruch R, De Cabo R, Anderson RM. Caloric restriction improves health and survival of rhesus monkeys. Nat Commun 2017; 8(1): 14063

[247]

Roberts SB, Pi-Sunyer X, Kuller L, Lane MA, Ellison P, Prior JC, Shapses S. Physiologic effects of lowering caloric intake in nonhuman primates and nonobese humans. J Gerontol A Biol Sci Med Sci 2001; 56(Spec No 1 Supplement 1): 66–75

[248]

Kagawa Y. Impact of Westernization on the nutrition of Japanese: changes in physique, cancer, longevity and centenarians. Prev Med 1978; 7(2): 205–217

[249]

Willcox BJ, Willcox DC, Todoriki H, Fujiyoshi A, Yano K, He Q, Curb JD, Suzuki M. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci 2007; 1114(1): 434–455

[250]

Willcox DC, Willcox BJ, He Q, Wang NC, Suzuki M. They really are that old: a validation study of centenarian prevalence in Okinawa. J Gerontol A Biol Sci Med Sci 2008; 63(4): 338–349

[251]

Angelino D, Pietrangeli F, Serafini M. Early dinner time and caloric restriction lapse contribute to the longevity of nonagenarians and centenarians of the Italian Abruzzo Region: a cross-sectional study. Front Nutr 2022; 9: 863106

[252]

Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA 2004; 101(17): 6659–6663

[253]

Ungvari Z, Parrado-Fernandez C, Csiszar A, De Cabo R. Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging. Circ Res 2008; 102(5): 519–528

[254]

Han X, Ren J. Caloric restriction and heart function: is there a sensible link. Acta Pharmacol Sin 2010; 31(9): 1111–1117

[255]

Hursting SD, Smith SM, Lashinger LM, Harvey AE, Perkins SN. Calories and carcinogenesis: lessons learned from 30 years of calorie restriction research. Carcinogenesis 2010; 31(1): 83–89

[256]

Masoro EJ. Overview of caloric restriction and ageing. Mech Ageing Dev 2005; 126(9): 913–922

[257]

Martin B, Mattson MP, Maudsley S. Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev 2006; 5(3): 332–353

[258]

Lane MA, Ingram DK, Roth GS. 2-Deoxy-D-glucose feeding in rats mimics physiologic effects of calorie restriction. J Anti Aging Med 1998; 1(4): 327–337

[259]

Agarwal B, Baur JA. Resveratrol and life extension. Ann N Y Acad Sci 2011; 1215(1): 138–143

[260]

Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin MJ, Schwab M, Pollak M, Zhang Y, Yu Y, Becker KG, Bohr VA, Ingram DK, Sinclair DA, Wolf NS, Spindler SR, Bernier M, de Cabo R. Metformin improves healthspan and lifespan in mice. Nat Commun 2013; 4(1): 2192

[261]

Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab 2019; 29(3): 592–610

[262]

Vasto S, Rizzo C, Caruso C. Centenarians and diet: what they eat in the Western part of Sicily. Immun Ageing 2012; 9(1): 10

[263]

Satija A, Bhupathiraju SN, Rimm EB, Spiegelman D, Chiuve SE, Borgi L, Willett WC, Manson JE, Sun Q, Hu FB. Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: results from three prospective cohort studies. PLoS Med 2016; 13(6): e1002039

[264]

Kim J, Giovannucci E. Healthful plant-based diet and incidence of type 2 diabetes in Asian population. Nutrients 2022; 14(15): 3078

[265]

Satija A, Bhupathiraju SN, Spiegelman D, Chiuve SE, Manson JE, Willett W, Rexrode KM, Rimm EB, Hu FB. Healthful and unhealthful plant-based diets and the risk of coronary heart disease in U. S. adults. J Am Coll Cardiol 2017; 70(4): 411–422

[266]

Tresserra-Rimbau A, Thompson AS, Bondonno N, Jennings A, Kühn T, Cassidy A. Plant-based dietary patterns and Parkinson’s disease: a prospective analysis of the UK Biobank. Mov Disord 2023; 38(11): 1994–2004

[267]

Wu H, Gu Y, Meng G, Wu H, Zhang S, Wang X, Zhang J, Huang T, Niu K. Quality of plant-based diet and the risk of dementia and depression among middle-aged and older population. Age Ageing 2023; 52(5): afad070

[268]

Maroto-Rodriguez J, Delgado-Velandia M, Ortolá R, Carballo-Casla A, García-Esquinas E, Rodríguez-Artalejo F, Sotos-Prieto M. Plant-based diets and risk of frailty in community-dwelling older adults: the Seniors-ENRICA-1 cohort. Geroscience 2023; 45(1): 221–232

[269]

Baden MY, Liu G, Satija A, Li Y, Sun Q, Fung TT, Rimm EB, Willett WC, Hu FB, Bhupathiraju SN. Changes in plant-based diet quality and total and cause-specific mortality. Circulation 2019; 140(12): 979–991

[270]

Liu X, Dhana K, Barnes LL, Tangney CC, Agarwal P, Aggarwal N, Holland TM, Beck T, Evans DA, Rajan KB. A healthy plant-based diet was associated with slower cognitive decline in African American older adults: a biracial community-based cohort. Am J Clin Nutr 2022; 116(4): 875–886

[271]

Li H, Zeng X, Wang Y, Zhang Z, Zhu Y, Li X, Hu A, Zhao Q, Yang W. A prospective study of healthful and unhealthful plant-based diet and risk of overall and cause-specific mortality. Eur J Nutr 2022; 61(1): 387–398

[272]

Rosenfeld RM, Juszczak HM, Wong MA. Scoping review of the association of plant-based diet quality with health outcomes. Front Nutr 2023; 10: 1211535

[273]

Fastame MC. Well-being, food habits, and lifestyle for longevity. Preliminary evidence from the sardinian centenarians and long-lived people of the Blue Zone. Psychol Health Med 2022; 27(3): 728–733

[274]

Loprinzi PD, Addoh O, Joyner C. Multimorbidity, mortality, and physical activity. Chronic Illn 2016; 12(4): 272–280

[275]

Zhao M, Veeranki SP, Li S, Steffen LM, Xi B. Beneficial associations of low and large doses of leisure time physical activity with all-cause, cardiovascular disease and cancer mortality: a national cohort study of 88, 140 US adults. Br J Sports Med 2019; 53(22): 1405–1411

[276]

Moore SC, Patel AV, Matthews CE, Berrington De Gonzalez A, Park Y, Katki HA, Linet MS, Weiderpass E, Visvanathan K, Helzlsouer KJ, Thun M, Gapstur SM, Hartge P, Lee IM. Leisure time physical activity of moderate to vigorous intensity and mortality: a large pooled cohort analysis. PLoS Med 2012; 9(11): e1001335

[277]

Chudasama YV, Khunti KK, Zaccardi F, Rowlands AV, Yates T, Gillies CL, Davies MJ, Dhalwani NN. Physical activity, multimorbidity, and life expectancy: a UK Biobank longitudinal study. BMC Med 2019; 17(1): 108

[278]

Paffenbarger RSJ Jr, Hyde RT, Wing AL, Hsieh CC. Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med 1986; 314(10): 605–613

[279]

Nocon M, Hiemann T, Müller-Riemenschneider F, Thalau F, Roll S, Willich SN. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil 2008; 15(3): 239–246

[280]

Löllgen H, Böckenhoff A, Knapp G. Physical activity and all-cause mortality: an updated meta-analysis with different intensity categories. Int J Sports Med 2009; 30(3): 213–224

[281]

Samitz G, Egger M, Zwahlen M. Domains of physical activity and all-cause mortality: systematic review and dose–response meta-analysis of cohort studies. Int J Epidemiol 2011; 40(5): 1382–1400

[282]

Grimsmo J, Maehlum S, Moelstad P, Arnesen H. Mortality and cardiovascular morbidity among long-term endurance male cross country skiers followed for 28–30 years. Scand J Med Sci Sports 2011; 21(6): e351–e358

[283]

Sanchis-Gomar F, Olaso-Gonzalez G, Corella D, Gomez-Cabrera MC, Vina J. Increased average longevity among the “Tour de France” cyclists. Int J Sports Med 2011; 32(8): 644–647

[284]

Pedersen BK. Which type of exercise keeps you young. Curr Opin Clin Nutr Metab Care 2019; 22(2): 167–173

[285]

Li Y, Pan A, Wang DD, Liu X, Dhana K, Franco OH, Kaptoge S, Di Angelantonio E, Stampfer M, Willett WC, Hu FB. Impact of healthy lifestyle factors on life expectancies in the US population. Circulation 2018; 138(4): 345–355

[286]

Tamakoshi A, Tamakoshi K, Lin Y, Yagyu K, Kikuchi S. Healthy lifestyle and preventable death: findings from the Japan Collaborative Cohort (JACC) Study. Prev Med 2009; 48(5): 486–492

[287]

Manuel DG, Perez R, Sanmartin C, Taljaard M, Hennessy D, Wilson K, Tanuseputro P, Manson H, Bennett C, Tuna M, Fisher S, Rosella LC. Measuring burden of unhealthy behaviours using a multivariable predictive approach: life expectancy lost in Canada attributable to smoking, alcohol, physical inactivity, and diet. PLoS Med 2016; 13(8): e1002082

[288]

Li K, Hüsing A, Kaaks R. Lifestyle risk factors and residual life expectancy at age 40: a German cohort study. BMC Med 2014; 12(1): 59

[289]

Khaw KT, Wareham N, Bingham S, Welch A, Luben R, Day N. Combined impact of health behaviours and mortality in men and women: the EPIC-Norfolk prospective population study. PLoS Med 2008; 5(1): e12

[290]

Chudasama YV, Khunti K, Gillies CL, Dhalwani NN, Davies MJ, Yates T, Zaccardi F. Healthy lifestyle and life expectancy in people with multimorbidity in the UK Biobank: a longitudinal cohort study. PLoS Med 2020; 17(9): e1003332

[291]

Liu G, Xie Z, Pang Y, Huang T, Huang Y. Association between 4-dimension lifestyle pattern and 10-year mortality risk in Chinese individuals older than 65: a population-based cohort study. Aging (Albany NY) 2021; 13(6): 8835–8848

[292]

Vollset SE, Tverdal A, Gjessing HK. Smoking and deaths between 40 and 70 years of age in women and men. Ann Intern Med 2006; 144(6): 381–389

[293]

Doll R, Peto R, Boreham J, Sutherland I. Mortality in relation to smoking: 50 years’ observations on male British doctors. BMJ 2004; 328(7455): 1519

[294]

Maxwell CJ, Hirdes JP. The prevalence of smoking and implications for quality of life among the community-based elderly. Am J Prev Med 1993; 9(6): 338–345

[295]

Tafaro L, Cicconetti P, Tedeschi G, Baratta A, Ursino R, Ettorre E, Marigliano V. Smoking and longevity: an incompatible binomial. Arch Gerontol Geriatr 2004; 38(9): 425–430

[296]

Li Y, Bai Y, Tao QL, Zeng H, Han LL, Luo MY, Zhang N, Zhong XN, Xie YJ, Zhao Y. Lifestyle of Chinese centenarians and their key beneficial factors in Chongqing, China. Asia Pac J Clin Nutr 2014; 23(2): 309–314

[297]

Hao Z, Chen L, Li Y, Zou X, Li H, Feng Z, Bai X, Wang Z, Qian J, Xu Y. Characteristics of centenarians’ lifestyles and their contribution to life satisfaction: a case study conducted on Hainan Island. Arch Gerontol Geriatr 2019; 83: 20–27

[298]

Wilson RS, Mendes De Leon CF, Bienias JL, Evans DA, Bennett DA. Personality and mortality in old age. J Gerontol B Psychol Sci Soc Sci 2004; 59(3): P110–P116

[299]

Darviri C, Demakakos P, Tigani X, Charizani F, Tsiou C, Tsagkari C, Chliaoutakis J, Monos D. Psychosocial dimensions of exceptional longevity: a qualitative exploration of centenarians’ experiences, personality, and life strategies. Int J Aging Hum Dev 2009; 69(2): 101–118

[300]

Masui Y, Gondo Y, Inagaki H, Hirose N. Do personality characteristics predict longevity? Findings from the Tokyo Centenarian Study. Age (Omaha) 2006; 28(4): 353–361

[301]

Martin P, Da Rosa G, Siegler IC, Davey A, MacDonald M, Poon LW. Personality and longevity: findings from the Georgia Centenarian Study. Age (Omaha) 2006; 28(4): 343–352

[302]

Andersen SL, Sun JX, Sebastiani P, Huntly J, Gass JD, Feldman L, Bae H, Christiansen L, Perls TT. Personality factors in the Long Life Family Study. J Gerontol B Psychol Sci Soc Sci 2013; 68(5): 739–749

[303]

Niu G, Melenberg B. Trends in mortality decrease and economic growth. Demography 2014; 51(5): 1755–1773

[304]

Bayati M, Akbarian R, Kavosi Z. Determinants of life expectancy in eastern mediterranean region: a health production function. Int J Health Policy Manag 2013; 1(1): 57–61

[305]

Chamie J. Scenarios for the development of world population. Genus 2005; 61(3/4): 69–89

[306]

Sedgwick WT, MacNutt S. An examination of the theorem of Allen Hazen that for every death from typhoid fever avoided by the purification of public water supplies two or three deaths are avoided from other causes. Science 1908; 28(711): 215–216

[307]

Rappuoli R, Pizza M, Del Giudice G, De Gregorio E. Vaccines, new opportunities for a new society. Proc Natl Acad Sci USA 2014; 111(34): 12288–12293

[308]

Adedeji WA. The treasure called antibiotics. Ann Ib Postgrad Med 2016; 14(2): 56–57

[309]

Beekman M, Nederstigt C, Suchiman HED, Kremer D, van der Breggen R, Lakenberg N, Alemayehu WG, de Craen AJM, Westendorp RGJ, Boomsma DI, de Geus EJC, Houwing-Duistermaat JJ, Heijmans BT, Slagboom PE. Genome-wide association study (GWAS)-identified disease risk alleles do not compromise human longevity. Proc Natl Acad Sci USA 2010; 107(42): 18046–18049

[310]

Gunn S, Wainberg M, Song Z, Andersen S, Boudreau R, Feitosa MF, Tan Q, Montasser ME, O’Connell JR, Stitziel N, Price N, Perls T, Schork NJ, Sebastiani P. Distribution of 54 polygenic risk scores for common diseases in long lived individuals and their offspring. Geroscience 2022; 44(2): 719–729

[311]

Vaccarezza M, Galassi FM. Inflammation beats cholesterol: a comment on the unequivocal driver of cardiovascular disease risk. J Clin Med 2023; 12(7): 2519

[312]

Lillioja S, Mott DM, Spraul M, Ferraro R, Foley JE, Ravussin E, Knowler WC, Bennett PH, Bogardus C. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med 1993; 329(27): 1988–1992

[313]

Wagenknecht LE, Mayer EJ, Haffner S, Selby J, Borok M, Henkin L, Howard G, Savage PJ, Saad F, Bergman N. The insulin resistance atherosclerosis study (IRAS) objectives, design, and recruitment results. Ann Epidemiol 1995; 5(6): 464–472

[314]

Barbieri M, Rosaria Rizzo M, Manzella D, Paolisso G. Age-related insulin resistance: is it an obligatory finding? The lesson from healthy centenarians. Diabetes Metab Res Rev 2001; 17(1): 19–26

[315]

Lio D, Licastro F, Scola L, Chiappelli M, Grimaldi LM, Crivello A, Colonna-Romano G, Candore G, Franceschi C, Caruso C. Interleukin-10 promoter polymorphism in sporadic Alzheimer’s disease. Genes Immun 2003; 4(3): 234–238

[316]

Xiao FH, Chen XQ, Yu Q, Ye Y, Liu YW, Yan D, Yang LQ, Chen G, Lin R, Yang L, Liao X, Zhang W, Zhang W, Tang NLS, Wang XF, Zhou J, Cai WW, He YH, Kong QP. Transcriptome evidence reveals enhanced autophagy-lysosomal function in centenarians. Genome Res 2018; 28(11): 1601–1610

[317]

Xiao FH, Yu Q, Deng ZL, Yang K, Ye Y, Ge MX, Yan D, Wang HT, Chen XQ, Yang LQ, Yang BY, Lin R, Zhang W, Yang XL, Dong L, He Y, Zhou J, Cai WW, Li J, Kong QP. ETS1 acts as a regulator of human healthy aging via decreasing ribosomal activity. Sci Adv 2022; 8(17): eabf2017

[318]

Li G, Han F, Xiao F, Gu K, Shen Q, Xu W, Li W, Wang Y, Liang B, Huang J, Xiao W, Kong Q. System-level metabolic modeling facilitates unveiling metabolic signature in exceptional longevity. Aging Cell 2022; 21(4): e13595

[319]

Sebastiani P, Federico A, Morris M, Gurinovich A, Tanaka T, Chandler KB, Andersen SL, Denis G, Costello CE, Ferrucci L, Jennings L, Glass DJ, Monti S, Perls TT. Protein signatures of centenarians and their offspring suggest centenarians age slower than other humans. Aging Cell 2021; 20(2): e13290

[320]

Santos-Lozano A, Valenzuela PL, Llavero F, Lista S, Carrera-Bastos P, Hampel H, Pareja-Galeano H, Gálvez BG, López JA, Vázquez J, Emanuele E, Zugaza JL, Lucia A. Successful aging: insights from proteome analyses of healthy centenarians. Aging (Albany NY) 2020; 12(4): 3502–3515

[321]

Schroer AB, Ventura PB, Sucharov J, Misra R, Chui MK, Bieri G, Horowitz AM, Smith LK, Encabo K, Tenggara I, Couthouis J, Gross JD, Chan JM, Luke A, Villeda SA. Platelet factors attenuate inflammation and rescue cognition in ageing. Nature 2023; 620(7976): 1071–1079

[322]

De Miguel Z, Khoury N, Betley MJ, Lehallier B, Willoughby D, Olsson N, Yang AC, Hahn O, Lu N, Vest RT, Bonanno LN, Yerra L, Zhang L, Saw NL, Fairchild JK, Lee D, Zhang H, McAlpine PL, Contrepois K, Shamloo M, Elias JE, Rando TA, Wyss-Coray T. Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature 2021; 600(7889): 494–499

[323]

Horowitz AM, Fan X, Bieri G, Smith LK, Sanchez-Diaz CI, Schroer AB, Gontier G, Casaletto KB, Kramer JH, Williams KE, Villeda SA. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science 2020; 369(6500): 167–173

[324]

Castellano JM, Mosher KI, Abbey RJ, McBride AA, James ML, Berdnik D, Shen JC, Zou B, Xie XS, Tingle M, Hinkson IV, Angst MS, Wyss-Coray T. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 2017; 544(7651): 488–492

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2790KB)

1509

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/