Metabolism and metabolomics in senescence, aging, and age-related diseases: a multiscale perspective

Ziyi Wang , Hongying Zhu , Wei Xiong

Front. Med. ›› 2025, Vol. 19 ›› Issue (2) : 200 -225.

PDF (7430KB)
Front. Med. ›› 2025, Vol. 19 ›› Issue (2) : 200 -225. DOI: 10.1007/s11684-024-1116-0
REVIEW

Metabolism and metabolomics in senescence, aging, and age-related diseases: a multiscale perspective

Author information +
History +
PDF (7430KB)

Abstract

The pursuit of healthy aging has long rendered aging and senescence captivating. Age-related ailments, such as cardiovascular diseases, diabetes, and neurodegenerative disorders, pose significant threats to individuals. Recent studies have shed light on the intricate mechanisms encompassing genetics, epigenetics, transcriptomics, and metabolomics in the processes of senescence and aging, as well as the establishment of age-related pathologies. Amidst these underlying mechanisms governing aging and related pathology metabolism assumes a pivotal role that holds promise for intervention and therapeutics. The advancements in metabolomics techniques and analysis methods have significantly propelled the study of senescence and aging, particularly with the aid of multiscale metabolomics which has facilitated the discovery of metabolic markers and therapeutic potentials. This review provides an overview of senescence and aging, emphasizing the crucial role metabolism plays in the aging process as well as age-related diseases.

Keywords

metabolism / aging / senescence / age-related diseases / metabolomics

Cite this article

Download citation ▾
Ziyi Wang, Hongying Zhu, Wei Xiong. Metabolism and metabolomics in senescence, aging, and age-related diseases: a multiscale perspective. Front. Med., 2025, 19(2): 200-225 DOI:10.1007/s11684-024-1116-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965; 37(3): 614–636

[2]

Nicholson JK, Lindon JC, Holmes E. “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999; 29(11): 1181–1189

[3]

Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 2014; 15(7): 482–496

[4]

Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer 2015; 15(7): 397–408

[5]

Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M. Unmasking transcriptional heterogeneity in senescent cells. Curr Biol 2017; 27(17): 2652–2660.e4

[6]

Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, Shirakawa K, Lim HW, Davis SS, Ramanathan A, Gerencser AA, Verdin E, Campisi J. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab 2016; 23(2): 303–314

[7]

Petrova NV, Velichko AK, Razin SV, Kantidze OL. Small molecule compounds that induce cellular senescence. Aging Cell 2016; 15(6): 999–1017

[8]

Chen JH, Stoeber K, Kingsbury S, Ozanne SE, Williams GH, Hales CN. Loss of proliferative capacity and induction of senescence in oxidatively stressed human fibroblasts. J Biol Chem 2004; 279(47): 49439–49446

[9]

Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM, Bardeesy N, Castrillon DH, Beach DH, Sharpless NE. Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 2013; 152(1–2): 340–351

[10]

Wang X, Feng Y, Pan L, Wang Y, Xu X, Lu J, Huang B. The proximal GC-rich region of p16(INK4a) gene promoter plays a role in its transcriptional regulation. Mol Cell Biochem 2007; 301(1–2): 259–266

[11]

Ohtani N, Zebedee Z, Huot TJ, Stinson JA, Sugimoto M, Ohashi Y, Sharrocks AD, Peters G, Hara E. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 2001; 409(6823): 1067–1070

[12]

Passegue E, Wagner EF. JunB suppresses cell proliferation by transcriptional activation of p16 (INK4a) expression. EMBO J 2000; 19(12): 2969–2979

[13]

Gan Q, Huang J, Zhou R, Niu J, Zhu X, Wang J, Zhang Z, Tong T. PPARgamma accelerates cellular senescence by inducing p16INK4α expression in human diploid fibroblasts. J Cell Sci 2008; 121(Pt 13): 2235–2245

[14]

Li J, Poi MJ, Tsai MD. Regulatory mechanisms of tumor suppressor P16INK4α and their relevance to cancer. Biochemistry 2011; 50(25): 5566–5582

[15]

Huang Y, Wu J, Li R, Wang P, Han L, Zhang Z, Tong T. B-MYB delays cell aging by repressing p16INK4α transcription. Cell Mol Life Sci 2011; 68(5): 893–901

[16]

Kotake Y, Ozawa Y, Harada M, Kitagawa K, Niida H, Morita Y, Tanaka K, Suda T, Kitagawa M. YB1 binds to and represses the p16 tumor suppressor gene. Genes Cells 2013; 18(11): 999–1006

[17]

Zhu D, Xu G, Ghandhi S, Hubbard K. Modulation of the expression of p16INK4a and p14ARF by hnRNP A1 and A2 RNA binding proteins: implications for cellular senescence. J Cell Physiol 2002; 193(1): 19–25

[18]

Guo GE, Ma LW, Jiang B, Yi J, Tong TJ, Wang WG. Hydrogen peroxide induces p16INK4a through an AUF1-dependent manner. J Cell Biochem 2010; 109(5): 1000–1005

[19]

Huang W, Tan D, Wang X, Han S, Tan J, Zhao Y, Lu J, Huang B. Histone deacetylase 3 represses p15INK4b and p21WAF1/cip1 transcription by interacting with Sp1. Biochem Biophys Res Commun 2006; 339(1): 165–171

[20]

Koo BH, Kim Y, Je Cho Y, Kim DS. Distinct roles of transforming growth factor-beta signaling and transforming growth factor-beta receptor inhibitor SB431542 in the regulation of p21 expression. Eur J Pharmacol 2015; 764: 413–423

[21]

Jung YS, Qian Y, Chen X. Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal 2010; 22(7): 1003–1012

[22]

Al-Khalaf HH, Aboussekhra A. p16INK4A positively regulates p21WAF1 expression by suppressing AUF1-dependent mRNA decay. PLoS One 2013; 8(7): e70133

[23]

Hayakawa T, Iwai M, Aoki S, Takimoto K, Maruyama M, Maruyama W, Motoyama N. SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation. PLoS One 2015; 10(1): e0116480

[24]

Takahashi A, Imai Y, Yamakoshi K, Kuninaka S, Ohtani N, Yoshimoto S, Hori S, Tachibana M, Anderton E, Takeuchi T, Shinkai Y, Peters G, Saya H, Hara E. DNA damage signaling triggers degradation of histone methyltransferases through APC/CCdh1 in senescent cells. Mol Cell 2012; 45(1): 123–131

[25]

Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, Limbad C, Demaria M, Li P, Hubbard GB, Ikeno Y, Javors M, Desprez PY, Benz CC, Kapahi P, Nelson PS, Campisi J. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 2015; 17(8): 1049–1061

[26]

Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, Raguz S, Acosta JC, Innes AJ, Banito A, Georgilis A, Montoya A, Wolter K, Dharmalingam G, Faull P, Carroll T, Martinez-Barbera JP, Cutillas P, Reisinger F, Heikenwalder M, Miller RA, Withers D, Zender L, Thomas GJ, Gil J. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 2015; 17(9): 1205–1217

[27]

Tiedje C, Ronkina N, Tehrani M, Dhamija S, Laass K, Holtmann H, Kotlyarov A, Gaestel M. The p38/MK2-driven exchange between tristetraprolin and HuR regulates AU-rich element-dependent translation. PLoS Genet 2012; 8(9): e1002977

[28]

Takasugi M, Okada R, Takahashi A, Virya Chen D, Watanabe S, Hara E. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat Commun 2017; 8(1): 15729

[29]

Jun JI, Lau LF. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 2011; 10(12): 945–963

[30]

Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 2016; 530(7589): 184–189

[31]

Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N, Takatsu Y, Melamed J, d’Adda di Fagagna F, Bernard D, Hernando E, Gil J. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008; 133(6): 1006–1018

[32]

Adams PD. Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell 2009; 36(1): 2–14

[33]

Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dolle ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 2014; 31(6): 722–733

[34]

Bent EH, Gilbert LA, Hemann MT. A senescence secretory switch mediated by PI3K/AKT/mTOR activation controls chemoprotective endothelial secretory responses. Genes Dev 2016; 30(16): 1811–1821

[35]

Blagosklonny MV. Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging. Aging (Albany NY) 2012; 4(3): 159–165

[36]

Cormenier J, Martin N, Desle J, Salazar-Cardozo C, Pourtier A, Abbadie C, Pluquet O. The ATF6α arm of the Unfolded Protein Response mediates replicative senescence in human fibroblasts through a COX2/prostaglandin E2 intracrine pathway. Mech Ageing Dev 2018; 170: 82–91

[37]

Tam AB, Mercado EL, Hoffmann A, Niwa M. ER stress activates NF-κB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS One 2012; 7(10): e45078

[38]

Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D, Hwang ES. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 2006; 5(2): 187–195

[39]

Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated (β)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 2000; 113(Pt 20): 3613–3622

[40]

Georgakopoulou EA, Tsimaratou K, Evangelou K, Fernandez-Marcos PJ, Zoumpourlis V, Trougakos IP, Kletsas D, Bartek J, Serrano M, Gorgoulis VG. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY) 2013; 5(1): 37–50

[41]

Tai H, Wang Z, Gong H, Han X, Zhou J, Wang X, Wei X, Ding Y, Huang N, Qin J, Zhang J, Wang S, Gao F, Chrzanowska-Lightowlers ZM, Xiang R, Xiao H. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017; 13(1): 99–113

[42]

Korolchuk VI, Miwa S, Carroll B, von Zglinicki T. Mitochondria in cell senescence: is mitophagy the weakest link. EBioMedicine 2017; 21: 7–13

[43]

Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TB, von Zglinicki T. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 2007; 5(5): e110

[44]

Studencka M, Schaber J. Senoptosis: non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2017; 8(19): 30656–30671

[45]

Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 2021; 22(2): 75–95

[46]

Venable ME, Lee JY, Smyth MJ, Bielawska A, Obeid LM. Role of ceramide in cellular senescence. J Biol Chem 1995; 270(51): 30701–30708

[47]

Venable ME, Yin X. Ceramide induces endothelial cell senescence. Cell Biochem Funct 2009; 27(8): 547–551

[48]

Lee JY, Bielawska AE, Obeid LM. Regulation of cyclin-dependent kinase 2 activity by ceramide. Exp Cell Res 2000; 261(2): 303–311

[49]

Quijano C, Cao L, Fergusson MM, Romero H, Liu J, Gutkind S, Rovira II, Mohney RP, Karoly ED, Finkel T. Oncogene-induced senescence results in marked metabolic and bioenergetic alterations. Cell Cycle 2012; 11(7): 1383–1392

[50]

Lizardo DY, Lin YL, Gokcumen O, Atilla-Gokcumen GE. Regulation of lipids is central to replicative senescence. Mol Biosyst 2017; 13(3): 498–509

[51]

Wiley CD, Brumwell AN, Davis SS, Jackson JR, Valdovinos A, Calhoun C, Alimirah F, Castellanos CA, Ruan R, Wei Y, Chapman HA, Ramanathan A, Campisi J, Jourdan Le Saux C. Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. JCI Insight 2019; 4(24): e130056

[52]

Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, Pascual G, Morris KJ, Khan S, Jin H, Dharmalingam G, Snijders AP, Carroll T, Capper D, Pritchard C, Inman GJ, Longerich T, Sansom OJ, Benitah SA, Zender L, Gil J. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 2013; 15(8): 978–990

[53]

Wiley CD, Sharma R, Davis SS, Lopez-Dominguez JA, Mitchell KP, Wiley S, Alimirah F, Kim DE, Payne T, Rosko A, Aimontche E, Deshpande SM, Neri F, Kuehnemann C, Demaria M, Ramanathan A, Campisi J. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metab 2021; 33(6): 1124–1136.e5

[54]

Li H, Ren M, Li Q. H NMR-based metabolomics reveals the intrinsic interaction of age, plasma signature metabolites, and nutrient intake in the longevity population in Guangxi, China. Nutrients 2022; 14(12): 2539

[55]

Rist MJ, Roth A, Frommherz L, Weinert CH, Kruger R, Merz B, Bunzel D, Mack C, Egert B, Bub A, Gorling B, Tzvetkova P, Luy B, Hoffmann I, Kulling SE, Watzl B. Metabolite patterns predicting sex and age in participants of the Karlsruhe Metabolomics and Nutrition (KarMeN) study. PLoS One 2017; 12(8): e0183228

[56]

Bunning BJ, Contrepois K, Lee-McMullen B, Dhondalay GKR, Zhang W, Tupa D, Raeber O, Desai M, Nadeau KC, Snyder MP, Andorf S. Global metabolic profiling to model biological processes of aging in twins. Aging Cell 2020; 19(1): e13073

[57]

Jové M, Mate I, Naudi A, Mota-Martorell N, Portero-Otin M, De la Fuente M, Pamplona R. Human aging is a metabolome-related matter of gender. J Gerontol A Biol Sci Med Sci 2016; 71(5): 578–585

[58]

Dunn WB, Lin W, Broadhurst D, Begley P, Brown M, Zelena E, Vaughan AA, Halsall A, Harding N, Knowles JD, Francis-McIntyre S, Tseng A, Ellis DI, O’Hagan S, Aarons G, Benjamin B, Chew-Graham S, Moseley C, Potter P, Winder CL, Potts C, Thornton P, McWhirter C, Zubair M, Pan M, Burns A, Cruickshank JK, Jayson GC, Purandare N, Wu FC, Finn JD, Haselden JN, Nicholls AW, Wilson ID, Goodacre R, Kell DB. Molecular phenotyping of a UK population: defining the human serum metabolome. Metabolomics 2015; 11(1): 9–26

[59]

Johnson LC, Parker K, Aguirre BF, Nemkov TG, D’Alessandro A, Johnson SA, Seals DR, Martens CR. The plasma metabolome as a predictor of biological aging in humans. Geroscience 2019; 41(6): 895–906

[60]

Aird KM, Zhang G, Li H, Tu Z, Bitler BG, Garipov A, Wu H, Wei Z, Wagner SN, Herlyn M, Zhang R. Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep 2013; 3(4): 1252–1265

[61]

Aird KM, Worth AJ, Snyder NW, Lee JV, Sivanand S, Liu Q, Blair IA, Wellen KE, Zhang R. ATM couples replication stress and metabolic reprogramming during cellular senescence. Cell Rep 2015; 11(6): 893–901

[62]

Buj R, Chen CW, Dahl ES, Leon KE, Kuskovsky R, Maglakelidze N, Navaratnarajah M, Zhang G, Doan MT, Jiang H, Zaleski M, Kutzler L, Lacko H, Lu Y, Mills GB, Gowda R, Robertson GP, Warrick JI, Herlyn M, Imamura Y, Kimball SR, DeGraff DJ, Snyder NW, Aird KM. Suppression of p16 induces mTORC1-mediated nucleotide metabolic reprogramming. Cell Rep 2019; 28(8): 1971–1980.e1978

[63]

Teruya T, Goga H, Yanagida M. Human age-declined saliva metabolic markers determined by LC-MS. Sci Rep 2021; 11(1): 18135

[64]

Chaleckis R, Murakami I, Takada J, Kondoh H, Yanagida M. Individual variability in human blood metabolites identifies age-related differences. Proc Natl Acad Sci USA 2016; 113(16): 4252–4259

[65]

Hwangbo N, Zhang X, Raftery D, Gu H, Hu SC, Montine TJ, Quinn JF, Chung KA, Hiller AL, Wang D, Fei Q, Bettcher L, Zabetian CP, Peskind E, Li G, Promislow DEL, Franks A. A metabolomic aging clock using human cerebrospinal fluid. J Gerontol A Biol Sci Med Sci 2022; 77(4): 744–754

[66]

Ichi I, Kamikawa C, Nakagawa T, Kobayashi K, Kataoka R, Nagata E, Kitamura Y, Nakazaki C, Matsura T, Kojo S. Neutral sphingomyelinase-induced ceramide accumulation by oxidative stress during carbon tetrachloride intoxication. Toxicology 2009; 261(1–2): 33–40

[67]

Robinson O, Chadeau Hyam M, Karaman I, Climaco Pinto R, Ala-Korpela M, Handakas E, Fiorito G, Gao H, Heard A, Jarvelin MR, Lewis M, Pazoki R, Polidoro S, Tzoulaki I, Wielscher M, Elliott P, Vineis P. Determinants of accelerated metabolomic and epigenetic aging in a UK cohort. Aging Cell 2020; 19(6): e13149

[68]

Masaldan S, Clatworthy SAS, Gamell C, Meggyesy PM, Rigopoulos AT, Haupt S, Haupt Y, Denoyer D, Adlard PA, Bush AI, Cater MA. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol 2018; 14: 100–115

[69]

Masaldan S, Clatworthy SAS, Gamell C, Smith ZM, Francis PS, Denoyer D, Meggyesy PM, Fontaine S, Cater MA. Copper accumulation in senescent cells: interplay between copper transporters and impaired autophagy. Redox Biol 2018; 16: 322–331

[70]

Zhang Y, Unnikrishnan A, Deepa SS, Liu Y, Li Y, Ikeno Y, Sosnowska D, Van Remmen H, Richardson A. A new role for oxidative stress in aging: the accelerated aging phenotype in Sod1-/- mice is correlated to increased cellular senescence. Redox Biol 2017; 11: 30–37

[71]

Kumar J, Barhydt T, Awasthi A, Lithgow GJ, Killilea DW, Kapahi P. Zinc levels modulate lifespan through multiple longevity pathways in Caenorhabditis elegans. PLoS One 2016; 11(4): e0153513

[72]

Salazar G, Huang J, Feresin RG, Zhao Y, Griendling KK. Zinc regulates Nox1 expression through a NF-κB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells. Free Radic Biol Med 2017; 108: 225–235

[73]

Malavolta M, Costarelli L, Giacconi R, Basso A, Piacenza F, Pierpaoli E, Provinciali M, Ogo OA, Ford D. Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. Exp Gerontol 2017; 99: 35–45

[74]

Rudolf E, Cervinka M. Stress responses of human dermal fibroblasts exposed to zinc pyrithione. Toxicol Lett 2011; 204(2–3): 164–173

[75]

Lafargue A, Degorre C, Corre I, Alves-Guerra MC, Gaugler MH, Vallette F, Pecqueur C, Paris F. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic Biol Med 2017; 108: 750–759

[76]

Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A, Day CP, Burt A, Palmer A, Anstee QM, Grellscheid SN, Hoeijmakers JHJ, Barnhoorn S, Mann DA, Bird TG, Vermeij WP, Kirkland JL, Passos JF, von Zglinicki T, Jurk D. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun 2017; 8(1): 15691

[77]

Velarde MC, Flynn JM, Day NU, Melov S, Campisi J. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging (Albany NY) 2012; 4(1): 3–12

[78]

Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11(3): 298–300

[79]

Zhu H, Li Q, Liao T, Yin X, Chen Q, Wang Z, Dai M, Yi L, Ge S, Miao C, Zeng W, Qu L, Ju Z, Huang G, Cang C, Xiong W. Metabolomic profiling of single enlarged lysosomes. Nat Methods 2021; 18(7): 788–798

[80]

Symons JL, Cho KJ, Chang JT, Du G, Waxham MN, Hancock JF, Levental I, Levental KR. Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages. Soft Matter 2021; 17(2): 288–297

[81]

Qiao X, Zhang Y, Ye A, Zhang Y, Xie T, Lv Z, Shi C, Wu D, Chu B, Wu X, Zhang W, Wang P, Liu GH, Wang CC, Wang L, Chen C. ER reductive stress caused by Ero1α S-nitrosation accelerates senescence. Free Radic Biol Med 2022; 180: 165–178

[82]

Lee JH, Lee J. Endoplasmic reticulum (ER) stress and its role in pancreatic β-cell dysfunction and senescence in type 2 diabetes. Int J Mol Sci 2022; 23(9): 4843

[83]

Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res 2023; 89: 101198

[84]

Fujimoto M, Hayashi T, Su TP. The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria. Biochem Biophys Res Commun 2012; 417(1): 635–639

[85]

Issop L, Fan J, Lee S, Rone MB, Basu K, Mui J, Papadopoulos V. Mitochondria-associated membrane formation in hormone-stimulated Leydig cell steroidogenesis: role of ATAD3. Endocrinology 2015; 156(1): 334–345

[86]

Mignard V, Dubois N, Lanoe D, Joalland MP, Oliver L, Pecqueur C, Heymann D, Paris F, Vallette FM, Lalier L. Sphingolipid distribution at mitochondria-associated membranes (MAMs) upon induction of apoptosis. J Lipid Res 2020; 61(7): 1025–1037

[87]

Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Canto C, Mottis A, Jo YS, Viswanathan M, Schoonjans K, Guarente L, Auwerx J. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 2013; 154(2): 430–441

[88]

Scheibye-Knudsen M, Mitchell SJ, Fang EF, Iyama T, Ward T, Wang J, Dunn CA, Singh N, Veith S, Hasan-Olive MM, Mangerich A, Wilson MA, Mattson MP, Bergersen LH, Cogger VC, Warren A, Le Couteur DG, Moaddel R, Wilson DM 3rd, Croteau DL, de Cabo R, Bohr VA. A high-fat diet and NAD+ activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab 2014; 20(5): 840–855

[89]

Asadi Shahmirzadi A, Edgar D, Liao CY, Hsu YM, Lucanic M, Asadi Shahmirzadi A, Wiley CD, Gan G, Kim DE, Kasler HG, Kuehnemann C, Kaplowitz B, Bhaumik D, Riley RR, Kennedy BK, Lithgow GJ. Alpha-ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice. Cell Metab 2020; 32(3): 447–456.e6

[90]

Wang Y, Deng P, Liu Y, Wu Y, Chen Y, Guo Y, Zhang S, Zheng X, Zhou L, Liu W, Li Q, Lin W, Qi X, Ou G, Wang C, Yuan Q. Alpha-ketoglutarate ameliorates age-related osteoporosis via regulating histone methylations. Nat Commun 2020; 11(1): 5596

[91]

Han YM, Bedarida T, Ding Y, Somba BK, Lu Q, Wang Q, Song P, Zou MH. β-hydroxybutyrate prevents vascular senescence through hnRNP A1-mediated upregulation of Oct4. Mol Cell 2018; 71(6): 1064–1078.e5

[92]

Wang SY, Wang WJ, Liu JQ, Song YH, Li P, Sun XF, Cai GY, Chen XM. Methionine restriction delays senescence and suppresses the senescence-associated secretory phenotype in the kidney through endogenous hydrogen sulfide. Cell Cycle 2019; 18(14): 1573–1587

[93]

Assmus B, Urbich C, Aicher A, Hofmann WK, Haendeler J, Rossig L, Spyridopoulos I, Zeiher AM, Dimmeler S. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res 2003; 92(9): 1049–1055

[94]

Liu S, Uppal H, Demaria M, Desprez PY, Campisi J, Kapahi P. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Sci Rep 2015; 5(1): 17895

[95]

Kitada K, Nakano D, Ohsaki H, Hitomi H, Minamino T, Yatabe J, Felder RA, Mori H, Masaki T, Kobori H, Nishiyama A. Hyperglycemia causes cellular senescence via a SGLT2- and p21-dependent pathway in proximal tubules in the early stage of diabetic nephropathy. J Diabetes Complications 2014; 28(5): 604–611

[96]

Thomas SR, Witting PK, Drummond GR. Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2008; 10(10): 1713–1765

[97]

Abe J, Berk BC. Reactive oxygen species as mediators of signal transduction in cardiovascular disease. Trends Cardiovasc Med 1998; 8(2): 59–64

[98]

Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 2011; 208(3): 417–420

[99]

Wenzel P, Schuhmacher S, Kienhofer J, Muller J, Hortmann M, Oelze M, Schulz E, Treiber N, Kawamoto T, Scharffetter-Kochanek K, Munzel T, Burkle A, Bachschmid MM, Daiber A. Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovasc Res 2008; 80(2): 280–289

[100]

Corral-Debrinski M. Hypoxemia is associated with mitochondrial DNA damage and gene induction. Implications for cardiac disease. JAMA 1991; 266(13): 1812–1816

[101]

Ding Y, Xia B, Yu J, Leng J, Huang J. Mitochondrial DNA mutations and essential hypertension. Int J Mol Med 2013; 32(4): 768–774

[102]

Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, Sartor RB, McIntyre TM, Silverstein RL, Tang WHW, DiDonato JA, Brown JM, Lusis AJ, Hazen SL. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016; 165(1): 111–124

[103]

Ganna A, Salihovic S, Sundstrom J, Broeckling CD, Hedman AK, Magnusson PK, Pedersen NL, Larsson A, Siegbahn A, Zilmer M, Prenni J, Arnlov J, Lind L, Fall T, Ingelsson E. Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS Genet 2014; 10(12): e1004801

[104]

Nascimben L, Ingwall JS, Pauletto P, Friedrich J, Gwathmey JK, Saks V, Pessina AC, Allen PD. Creatine kinase system in failing and nonfailing human myocardium. Circulation 1996; 94(8): 1894–1901

[105]

Neubauer S, Krahe T, Schindler R, Horn M, Hillenbrand H, Entzeroth C, Mader H, Kromer EP, Riegger GA, Lackner K. 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation 1992; 86(6): 1810–1818

[106]

Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85(3): 1093–1129

[107]

Ussher JR, Elmariah S, Gerszten RE, Dyck JR. The emerging role of metabolomics in the diagnosis and prognosis of cardiovascular disease. J Am Coll Cardiol 2016; 68(25): 2850–2870

[108]

Ahmad T, Kelly JP, McGarrah RW, Hellkamp AS, Fiuzat M, Testani JM, Wang TS, Verma A, Samsky MD, Donahue MP, Ilkayeva OR, Bowles DE, Patel CB, Milano CA, Rogers JG, Felker GM, O’Connor CM, Shah SH, Kraus WE. Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory support. J Am Coll Cardiol 2016; 67(3): 291–299

[109]

Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 1996; 94(11): 2837–2842

[110]

Lommi J, Kupari M, Yki-Jarvinen H. Free fatty acid kinetics and oxidation in congestive heart failure. Am J Cardiol 1998; 81(1): 45–50

[111]

Chen Y, Hu D, Zhao L, Tang W, Li B. Unraveling metabolic alterations in transgenic mouse model of Alzheimer’s disease using MALDI MS imaging with 4-aminocinnoline-3-carboxamide matrix. Anal Chim Acta 2022; 1192: 339337

[112]

Panyard DJ, Kim KM, Darst BF, Deming YK, Zhong X, Wu Y, Kang H, Carlsson CM, Johnson SC, Asthana S, Engelman CD, Lu Q. Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Commun Biol 2021; 4(1): 63

[113]

Teruya T, Chen YJ, Kondoh H, Fukuji Y, Yanagida M. Whole-blood metabolomics of dementia patients reveal classes of disease-linked metabolites. Proc Natl Acad Sci USA 2021; 118(37): e2022857118

[114]

Feringa FM, van der Kant R. Cholesterol and Alzheimer’s disease; from risk genes to pathological effects. Front Aging Neurosci 2021; 13: 690372

[115]

Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 2004; 101(7): 2070–2075

[116]

Mori T, Paris D, Town T, Rojiani AM, Sparks DL, Delledonne A, Crawford F, Abdullah LI, Humphrey JA, Dickson DW, Mullan MJ. Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(SW) mice. J Neuropathol Exp Neurol 2001; 60(8): 778–785

[117]

Liu Y, Zhong X, Shen J, Jiao L, Tong J, Zhao W, Du K, Gong S, Liu M, Wei M. Elevated serum TC and LDL-C levels in Alzheimer’s disease and mild cognitive impairment: a meta-analysis study. Brain Res 2020; 1727: 146554

[118]

Varma VR, Busra Luleci H, Oommen AM, Varma S, Blackshear CT, Griswold ME, An Y, Roberts JA, O’Brien R, Pletnikova O, Troncoso JC, Bennett DA, Cakir T, Legido-Quigley C, Thambisetty M. Abnormal brain cholesterol homeostasis in Alzheimer’s disease—a targeted metabolomic and transcriptomic study. NPJ Aging Mech Dis 2021; 7(1): 11

[119]

Wang H, Kulas JA, Wang C, Holtzman DM, Ferris HA, Hansen SB. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc Natl Acad Sci USA 2021; 118(33): e2102191118

[120]

Li X, Zhang J, Li D, He C, He K, Xue T, Wan L, Zhang C, Liu Q. Astrocytic ApoE reprograms neuronal cholesterol metabolism and histone-acetylation-mediated memory. Neuron 2021; 109(6): 957–970.e8

[121]

Pierrot N, Tyteca D, D’Auria L, Dewachter I, Gailly P, Hendrickx A, Tasiaux B, Haylani LE, Muls N, N’Kuli F, Laquerriere A, Demoulin JB, Campion D, Brion JP, Courtoy PJ, Kienlen-Campard P, Octave JN. Amyloid precursor protein controls cholesterol turnover needed for neuronal activity. EMBO Mol Med 2013; 5(4): 608–625

[122]

Gutierrez E, Lutjohann D, Kerksiek A, Fabiano M, Oikawa N, Kuerschner L, Thiele C, Walter J. Importance of gamma-secretase in the regulation of liver X receptor and cellular lipid metabolism. Life Sci Alliance 2020; 3(6): e201900521

[123]

Fong LK, Yang MM, Dos Santos Chaves R, Reyna SM, Langness VF, Woodruff G, Roberts EA, Young JE, Goldstein LSB. Full-length amyloid precursor protein regulates lipoprotein metabolism and amyloid-beta clearance in human astrocytes. J Biol Chem 2018; 293(29): 11341–11357

[124]

Schonfeld P, Reiser G. How the brain fights fatty acids’ toxicity. Neurochem Int 2021; 148: 105050

[125]

Qi G, Mi Y, Shi X, Gu H, Brinton RD, Yin F. ApoE4 impairs neuron-astrocyte coupling of fatty acid metabolism. Cell Rep 2021; 34(1): 108572

[126]

Ates G, Goldberg J, Currais A, Maher P. CMS121, a fatty acid synthase inhibitor, protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer’s disease. Redox Biol 2020; 36: 101648

[127]

Ralhan I, Chang CL, Lippincott-Schwartz J, Ioannou MS. Lipid droplets in the nervous system. J Cell Biol 2021; 220(7): e202102136

[128]

Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, Pluvinage JV, Mathur V, Hahn O, Morgens DW, Kim J, Tevini J, Felder TK, Wolinski H, Bertozzi CR, Bassik MC, Aigner L, Wyss-Coray T. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci 2020; 23(2): 194–208

[129]

Cramb KML, Beccano-Kelly D, Cragg SJ, Wade-Martins R. Impaired dopamine release in Parkinson’s disease. Brain 2023; 146(8): 3117–3132

[130]

Zhou ZD, Yi LX, Wang DQ, Lim TM, Tan EK. Role of dopamine in the pathophysiology of Parkinson’s disease. Transl Neurodegener 2023; 12(1): 44

[131]

Sacheli MA, Neva JL, Lakhani B, Murray DK, Vafai N, Shahinfard E, English C, McCormick S, Dinelle K, Neilson N, McKenzie J, Schulzer M, McKenzie DC, Appel-Cresswell S, McKeown MJ, Boyd LA, Sossi V, Stoessl AJ. Exercise increases caudate dopamine release and ventral striatal activation in Parkinson’s disease. Mov Disord 2019; 34(12): 1891–1900

[132]

Akdemir UO, Bora Tokcaer A, Atay LO. Dopamine transporter SPECT imaging in Parkinson’s disease and parkinsonian disorders. Turk J Med Sci 2021; 51(2): 400–410

[133]

Hu L, Dong MX, Huang YL, Lu CQ, Qian Q, Zhang CC, Xu XM, Liu Y, Chen GH, Wei YD. Integrated metabolomics and proteomics analysis reveals plasma lipid metabolic disturbance in patients with Parkinson’s disease. Front Mol Neurosci 2020; 13: 80

[134]

Shao Y, Li T, Liu Z, Wang X, Xu X, Li S, Xu G, Le W. Comprehensive metabolic profiling of Parkinson’s disease by liquid chromatography-mass spectrometry. Mol Neurodegener 2021; 16(1): 4

[135]

Belarbi K, Cuvelier E, Bonte MA, Desplanque M, Gressier B, Devos D, Chartier-Harlin MC. Glycosphingolipids and neuroinflammation in Parkinson’s disease. Mol Neurodegener 2020; 15(1): 59

[136]

Fernandez-Irigoyen J, Cartas-Cejudo P, Iruarrizaga-Lejarreta M, Santamaria E. Alteration in the cerebrospinal fluid lipidome in Parkinson’s disease: a post-mortem pilot study. Biomedicines 2021; 9(5): 491

[137]

Galper J, Dean NJ, Pickford R, Lewis SJG, Halliday GM, Kim WS, Dzamko N. Lipid pathway dysfunction is prevalent in patients with Parkinson’s disease. Brain 2022; 145(10): 3472–3487

[138]

Skowronska-Krawczyk D, Budin I. Aging membranes: unexplored functions for lipids in the lifespan of the central nervous system. Exp Gerontol 2020; 131: 110817

[139]

Huebecker M, Moloney EB, van der Spoel AC, Priestman DA, Isacson O, Hallett PJ, Platt FM. Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson’s disease. Mol Neurodegener 2019; 14(1): 40

[140]

Qi A, Liu L, Zhang J, Chen S, Xu S, Chen Y, Zhang L, Cai C. Plasma metabolic analysis reveals the dysregulation of short-chain fatty acid metabolism in Parkinson’s disease. Mol Neurobiol 2023; 60(5): 2619–2631

[141]

Kawahata I, Bousset L, Melki R, Fukunaga K. Fatty acid-binding protein 3 is critical for α-synuclein uptake and MPP-induced mitochondrial dysfunction in cultured dopaminergic neurons. Int J Mol Sci 2019; 20(21): 5358

[142]

Liu M, Jiao Q, Du X, Bi M, Chen X, Jiang H. Potential crosstalk between Parkinson’s disease and energy metabolism. Aging Dis 2021; 12(8): 2003–2015

[143]

Komici K, Femminella GD, Bencivenga L, Rengo G, Pagano G. Diabetes mellitus and Parkinson’s disease: a systematic review and meta-analyses. J Parkinsons Dis 2021; 11(4): 1585–1596

[144]

Sánchez-Gómez A, Diaz Y, Duarte-Salles T, Compta Y, Marti MJ. Prediabetes, type 2 diabetes mellitus and risk of Parkinson’s disease: a population-based cohort study. Parkinsonism Relat Disord 2021; 89: 22–27

[145]

Chohan H, Senkevich K, Patel RK, Bestwick JP, Jacobs BM, Bandres Ciga S, Gan-Or Z, Noyce AJ. Type 2 diabetes as a determinant of Parkinson’s disease risk and progression. Mov Disord 2021; 36(6): 1420–1429

[146]

Chung HS, Lee JS, Kim JA, Roh E, Lee YB, Hong SH, Yu JH, Kim NH, Yoo HJ, Seo JA, Kim SG, Kim NH, Baik SH, Choi KM. Fasting plasma glucose variability in midlife and risk of Parkinson’s disease: a nationwide population-based study. Diabetes Metab 2021; 47(3): 101195

[147]

Rhee SY, Han KD, Kwon H, Park SE, Park YG, Kim YH, Yoo SJ, Rhee EJ, Lee WY. Association between glycemic status and the risk of Parkinson disease: a nationwide population-based study. Diabetes Care 2020; 43(9): 2169–2175

[148]

Pignalosa FC, Desiderio A, Mirra P, Nigro C, Perruolo G, Ulianich L, Formisano P, Beguinot F, Miele C, Napoli R, Fiory F. Diabetes and cognitive impairment: a role for glucotoxicity and dopaminergic dysfunction. Int J Mol Sci 2021; 22(22): 12366

[149]

Pérez-Taboada I, Alberquilla S, Martin ED, Anand R, Vietti-Michelina S, Tebeka NN, Cantley J, Cragg SJ, Moratalla R, Vallejo M. Diabetes causes dysfunctional dopamine neurotransmission favoring nigrostriatal degeneration in mice. Mov Disord 2020; 35(9): 1636–1648

[150]

Lv YQ, Yuan L, Sun Y, Dou HW, Su JH, Hou ZP, Li JY, Li W. Long-term hyperglycemia aggravates alpha-synuclein aggregation and dopaminergic neuronal loss in a Parkinson’s disease mouse model. Transl Neurodegener 2022; 11(1): 14

[151]

Su CJ, Shen Z, Cui RX, Huang Y, Xu DL, Zhao FL, Pan J, Shi AM, Liu T, Yu YL. Thioredoxin-interacting protein (TXNIP) regulates parkin/PINK1-mediated mitophagy in dopaminergic neurons under high-glucose conditions: implications for molecular links between Parkinson’s disease and diabetes. Neurosci Bull 2020; 36(4): 346–358

[152]

Jeong SM, Han K, Kim D, Rhee SY, Jang W, Shin DW. Body mass index, diabetes, and the risk of Parkinson’s disease. Mov Disord 2020; 35(2): 236–244

[153]

Ou R, Wei Q, Hou Y, Zhang L, Liu K, Lin J, Jiang Z, Song W, Cao B, Shang H. Effect of diabetes control status on the progression of Parkinson’s disease: a prospective study. Ann Clin Transl Neurol 2021; 8(4): 887–897

[154]

Szturm T, Beheshti I, Mahana B, Hobson DE, Goertzen A, Ko JH. Imaging cerebral glucose metabolism during dual-task walking in patients with Parkinson’s disease. J Neuroimaging 2021; 31(2): 356–362

[155]

Simmering JE, Welsh MJ, Liu L, Narayanan NS, Pottegard A. Association of glycolysis-enhancing α-1 blockers with risk of developing Parkinson disease. JAMA Neurol 2021; 78(4): 407–413

[156]

Cai R, Zhang Y, Simmering JE, Schultz JL, Li Y, Fernandez-Carasa I, Consiglio A, Raya A, Polgreen PM, Narayanan NS, Yuan Y, Chen Z, Su W, Han Y, Zhao C, Gao L, Ji X, Welsh MJ, Liu L. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J Clin Invest 2019; 129(10): 4539–4549

[157]

Tang BL. Glucose, glycolysis, and neurodegenerative diseases. J Cell Physiol 2020; 235(11): 7653–7662

[158]

Melnikova A, Pozdyshev D, Barinova K, Kudryavtseva S, Muronetz VI. α-synuclein overexpression in SH-SY5Y human neuroblastoma cells leads to the accumulation of thioflavin S-positive aggregates and impairment of glycolysis. Biochemistry (Mosc) 2020; 85(5): 604–613

[159]

Kumari S, Goyal V, Kumaran SS, Dwivedi SN, Srivastava A, Jagannathan NR. Quantitative metabolomics of saliva using proton NMR spectroscopy in patients with Parkinson’s disease and healthy controls. Neurol Sci 2020; 41(5): 1201–1210

[160]

Sinclair E, Trivedi DK, Sarkar D, Walton-Doyle C, Milne J, Kunath T, Rijs AM, de Bie RMA, Goodacre R, Silverdale M, Barran P. Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat Commun 2021; 12(1): 1592

[161]

Bhansali S, Bhansali A, Walia R, Saikia UN, Dhawan V. Alterations in mitochondrial oxidative stress and mitophagy in subjects with prediabetes and type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2017; 8: 347

[162]

Schrauwen P, Schrauwen-Hinderling V, Hoeks J, Hesselink MK. Mitochondrial dysfunction and lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801(3): 266–271

[163]

Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002; 51(10): 2944–2950

[164]

Phielix E, Schrauwen-Hinderling VB, Mensink M, Lenaers E, Meex R, Hoeks J, Kooi ME, Moonen-Kornips E, Sels JP, Hesselink MK, Schrauwen P. Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes 2008; 57(11): 2943–2949

[165]

Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 2003; 52(3): 581–587

[166]

Anello M, Lupi R, Spampinato D, Piro S, Masini M, Boggi U, Del Prato S, Rabuazzo AM, Purrello F, Marchetti P. Functional and morphological alterations of mitochondria in pancreatic β cells from type 2 diabetic patients. Diabetologia 2005; 48(2): 282–289

[167]

Xie X, Yi Z, Sinha S, Madan M, Bowen BP, Langlais P, Ma D, Mandarino L, Meyer C. Proteomics analyses of subcutaneous adipocytes reveal novel abnormalities in human insulin resistance. Obesity (Silver Spring) 2016; 24(7): 1506–1514

[168]

Luo L, Liu M. Adipose tissue in control of metabolism. J Endocrinol 2016; 231(3): R77–R99

[169]

Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, Cline GW, Befroy D, Zemany L, Kahn BB, Papademetris X, Rothman DL, Shulman GI. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci USA 2007; 104(31): 12587–12594

[170]

DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009; 32(Suppl 2): S157–163

[171]

Krssak M, Brehm A, Bernroider E, Anderwald C, Nowotny P, Dalla Man C, Cobelli C, Cline GW, Shulman GI, Waldhausl W, Roden M. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes 2004; 53(12): 3048–3056

[172]

Glass CK, Olefsky JM. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab 2012; 15(5): 635–645

[173]

Gancheva S, Jelenik T, Alvarez-Hernandez E, Roden M. Interorgan metabolic crosstalk in human insulin resistance. Physiol Rev 2018; 98(3): 1371–1415

[174]

Girousse A, Tavernier G, Valle C, Moro C, Mejhert N, Dinel AL, Houssier M, Roussel B, Besse-Patin A, Combes M, Mir L, Monbrun L, Bezaire V, Prunet-Marcassus B, Waget A, Vila I, Caspar-Bauguil S, Louche K, Marques MA, Mairal A, Renoud ML, Galitzky J, Holm C, Mouisel E, Thalamas C, Viguerie N, Sulpice T, Burcelin R, Arner P, Langin D. Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass. PLoS Biol 2013; 11(2): e1001485

[175]

Solinas G, Boren J, Dulloo AG. De novo lipogenesis in metabolic homeostasis: more friend than foe. Mol Metab 2015; 4(5): 367–377

[176]

Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 2008; 134(6): 933–944

[177]

Yilmaz M, Claiborn KC, Hotamisligil GS. De novo lipogenesis products and endogenous lipokines. Diabetes 2016; 65(7): 1800–1807

[178]

Zhao H, Li X, Zhang D, Chen H, Chao Y, Wu K, Dong X, Su J. Integrative bone metabolomics-lipidomics strategy for pathological mechanism of postmenopausal osteoporosis mouse model. Sci Rep 2018; 8(1): 16456

[179]

Parhami F, Jackson SM, Tintut Y, Le V, Balucan JP, Territo M, Demer LL. Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells. J Bone Miner Res 1999; 14(12): 2067–2078

[180]

Tintut Y, Parhami F, Tsingotjidou A, Tetradis S, Territo M, Demer LL. 8-Isoprostaglandin E2 enhances receptor-activated NF-κB ligand (RANKL)-dependent osteoclastic potential of marrow hematopoietic precursors via the cAMP pathway. J Biol Chem 2002; 277(16): 14221–14226

[181]

You L, Sheng ZY, Tang CL, Chen L, Pan L, Chen JY. High cholesterol diet increases osteoporosis risk via inhibiting bone formation in rats. Acta Pharmacol Sin 2011; 32(12): 1498–1504

[182]

Miyazaki T, Iwasawa M, Nakashima T, Mori S, Shigemoto K, Nakamura H, Katagiri H, Takayanagi H, Tanaka S. Intracellular and extracellular ATP coordinately regulate the inverse correlation between osteoclast survival and bone resorption. J Biol Chem 2012; 287(45): 37808–37823

[183]

Moayyeri A, Cheung CL, Tan KC, Morris JA, Cerani A, Mohney RP, Richards JB, Hammond C, Spector TD, Menni C. Metabolomic pathways to osteoporosis in middle-aged women: a genome-metabolome-wide Mendelian randomization study. J Bone Miner Res 2018; 33(4): 643–650

[184]

Miyamoto K, Hirayama A, Sato Y, Ikeda S, Maruyama M, Soga T, Tomita M, Nakamura M, Matsumoto M, Yoshimura N, Miyamoto T. A metabolomic profile predictive of new osteoporosis or sarcopenia development. Metabolites 2021; 11(5): 278

[185]

Sartori T, Santos ACA, Oliveira da Silva R, Kodja G, Rogero MM, Borelli P, Fock RA. Branched chain amino acids improve mesenchymal stem cell proliferation, reducing nuclear factor κB expression and modulating some inflammatory properties. Nutrition 2020; 78: 110935

[186]

Deng D, Pan C, Wu Z, Sun Y, Liu C, Xiang H, Yin P, Shang D. An integrated metabolomic study of osteoporosis: discovery and quantification of hyocholic acids as candidate markers. Front Pharmacol 2021; 12: 725341

[187]

Cantó C, Menzies KJ, Auwerx J. NAD+ metabolism and the control of energy homeostasis: a balancing Act between mitochondria and the nucleus. Cell Metab 2015; 22(1): 31–53

[188]

Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL, Sinclair DA. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 2013; 155(7): 1624–1638

[189]

Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 2011; 14(4): 528–536

[190]

Wan QL, Fu X, Meng X, Luo Z, Dai W, Yang J, Wang C, Wang H, Zhou Q. Hypotaurine promotes longevity and stress tolerance via the stress response factors DAF-16/FOXO and SKN-1/NRF2 in Caenorhabditis elegans. Food Funct 2020; 11(1): 347–357

[191]

Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005; 1(1): 15–25

[192]

Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, Kang H, Shaw RJ, Evans RM. AMPK and PPARδ agonists are exercise mimetics. Cell 2008; 134(3): 405–415

[193]

Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Kovalenko IG, Poroshina TE, Semenchenko AV, Provinciali M, Re F, Franceschi C. Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp Gerontol 2005; 40(8–9): 685–693

[194]

Wu S, Zou MH. AMPK, mitochondrial function, and cardiovascular disease. Int J Mol Sci 2020; 21(14): 4987

[195]

Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW, Thomas EL, Kockel L. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 2010; 11(6): 453–465

[196]

Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12(1): 21–35

[197]

Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009; 460(7253): 392–395

[198]

Masoro EJ. Overview of caloric restriction and ageing. Mech Ageing Dev 2005; 126(9): 913–922

[199]

Huffman DM, Barzilai N. Role of visceral adipose tissue in aging. Biochim Biophys Acta, Gen Subj 2009; 1790(10): 1117–1123

[200]

Bartke A, Westbrook R. Metabolic characteristics of long-lived mice. Front Genet 2012; 3: 288

[201]

Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D’Agostino D, Planavsky N, Lupfer C, Kanneganti TD, Kang S, Horvath TL, Fahmy TM, Crawford PA, Biragyn A, Alnemri E, Dixit VD. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 2015; 21(3): 263–269

[202]

Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 2014; 34(36): 11929–11947

[203]

Roy A, Jana M, Corbett GT, Ramaswamy S, Kordower JH, Gonzalez FJ, Pahan K. Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor alpha. Cell Rep 2013; 4(4): 724–737

[204]

Luo R, Su LY, Li G, Yang J, Liu Q, Yang LX, Zhang DF, Zhou H, Xu M, Fan Y, Li J, Yao YG. Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model. Autophagy 2020; 16(1): 52–69

[205]

Mota SI, Pita I, Aguas R, Tagorti S, Virmani A, Pereira FC, Rego AC. Mechanistic perspectives on differential mitochondrial-based neuroprotective effects of several carnitine forms in Alzheimer’s disease in vitro model. Arch Toxicol 2021; 95(8): 2769–2784

[206]

Dai L, Zou L, Meng L, Qiang G, Yan M, Zhang Z. Cholesterol metabolism in neurodegenerative diseases: molecular mechanisms and therapeutic targets. Mol Neurobiol 2021; 58(5): 2183–2201

[207]

Palermo G, Giannoni S, Giuntini M, Belli E, Frosini D, Siciliano G, Ceravolo R. Statins in Parkinson’s disease: influence on motor progression. J Parkinsons Dis 2021; 11(4): 1651–1662

[208]

Nguyen TTH, Fournier A, Courtois E, Artaud F, Escolano S, Tubert-Bitter P, Boutron-Ruault MC, Degaey I, Roze E, Canonico M, Ahmed I, Thiebaut ACM, Elbaz A. Statin use and incidence of Parkinson’s disease in women from the French E3N cohort study. Mov Disord 2023; 38(5): 854–865

[209]

Soppert J, Lehrke M, Marx N, Jankowski J, Noels H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev 2020; 159: 4–33

[210]

Duarte Lau F, Giugliano RP. Lipoprotein(a) and its significance in cardiovascular disease: a review. JAMA Cardiol 2022; 7(7): 760–769

[211]

Brauer R, Wei L, Ma T, Athauda D, Girges C, Vijiaratnam N, Auld G, Whittlesea C, Wong I, Foltynie T. Diabetes medications and risk of Parkinson’s disease: a cohort study of patients with diabetes. Brain 2020; 143(10): 3067–3076

[212]

Labandeira CM, Fraga-Bau A, Arias Ron D, Munoz A, Alonso-Losada G, Koukoulis A, Romero-Lopez J, Rodriguez-Perez AI. Diabetes, insulin and new therapeutic strategies for Parkinson’s disease: focus on glucagon-like peptide-1 receptor agonists. Front Neuroendocrinol 2021; 62: 100914

[213]

Zhang L, Zhang L, Li Y, Li L, Melchiorsen JU, Rosenkilde M, Holscher C. The novel dual GLP-1/GIP receptor agonist DA-CH5 is superior to single GLP-1 receptor agonists in the MPTP model of Parkinson’s disease. J Parkinsons Dis 2020; 10(2): 523–542

[214]

Wang DX, Chen AD, Wang QJ, Xin YY, Yin J, Jing YH. Protective effect of metformin against rotenone-induced parkinsonism in mice. Toxicol Mech Methods 2020; 30(5): 350–357

[215]

Ryu YK, Go J, Park HY, Choi YK, Seo YJ, Choi JH, Rhee M, Lee TG, Lee CH, Kim KS. Metformin regulates astrocyte reactivity in Parkinson’s disease and normal aging. Neuropharmacology 2020; 175: 108173

[216]

Hussain S, Singh A, Baxi H, Taylor B, Burgess J, Antony B. Thiazolidinedione use is associated with reduced risk of Parkinson’s disease in patients with diabetes: a meta-analysis of real-world evidence. Neurol Sci 2020; 41(12): 3697–3703

[217]

Lita A, Kuzmin AN, Pliss A, Baev A, Rzhevskii A, Gilbert MR, Larion M, Prasad PN. Toward single-organelle lipidomics in live cells. Anal Chem 2019; 91(17): 11380–11387

[218]

Zhu H, Zou G, Wang N, Zhuang M, Xiong W, Huang G. Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry. Proc Natl Acad Sci USA 2017; 114(10): 2586–2591

[219]

Lombard-Banek C, Li J, Portero EP, Onjiko RM, Singer CD, Plotnick DO, Al Shabeeb RQ, Nemes P. In vivo subcellular mass spectrometry enables proteo-metabolomic single-cell systems biology in a chordate embryo developing to a normally behaving tadpole (X. laevis). Angew Chem Int Ed 2021; 60(23): 12852–12858

[220]

Capolupo L, Khven I, Lederer AR, Mazzeo L, Glousker G, Ho S, Russo F, Montoya JP, Bhandari DR, Bowman AP, Ellis SR, Guiet R, Burri O, Detzner J, Muthing J, Homicsko K, Kuonen F, Gilliet M, Spengler B, Heeren RMA, Dotto GP, La Manno G, D'Angelo G. Sphingolipids control dermal fibroblast heterogeneity. Science 2022; 376(6590): eabh1623

[221]

Ostrowski SG, Van Bell CT, Winograd N, Ewing AG. Mass spectrometric imaging of highly curved membranes during Tetrahymena mating. Science 2004; 305(5680): 71–73

[222]

Yeager AN, Weber PK, Kraft ML. Three-dimensional imaging of cholesterol and sphingolipids within a Madin-Darby canine kidney cell. Biointerphases 2016; 11(2): 02A309

[223]

Arrojo e Drigo R, Lev-Ram V, Tyagi S, Ramachandra R, Deerinck T, Bushong E, Phan S, Orphan V, Lechene C, Ellisman MH, Hetzer MW. Age mosaicism across multiple scales in adult tissues. Cell Metab 2019; 30(2): 343–351.e3

[224]

Wang X, Hou Y, Hou Z, Xiong W, Huang G. Mass spectrometry imaging of brain cholesterol and metabolites with trifluoroacetic acid-enhanced desorption electrospray ionization. Anal Chem 2019; 91(4): 2719–2726

[225]

Liu C, Qi K, Yao L, Xiong Y, Zhang X, Zang J, Tian C, Xu M, Yang J, Lin Z, Lv Y, Xiong W, Pan Y. Imaging of Polar and Nonpolar Species Using Compact Desorption Electrospray Ionization/Postphotoionization Mass Spectrometry. Anal Chem 2019; 91(10): 6616–6623

[226]

Carlred L, Vukojevic V, Johansson B, Schalling M, Hook F, Sjovall P. Imaging of amyloid-β in Alzheimer’s disease transgenic mouse brains with ToF-SIMS using immunoliposomes. Biointerphases 2016; 11(2): 02A312

[227]

Philipsen MH, Phan NTN, Fletcher JS, Malmberg P, Ewing AG. Mass spectrometry imaging shows cocaine and methylphenidate have opposite effects on major lipids in Drosophila brain. ACS Chem Neurosci 2018; 9(6): 1462–1468

[228]

Ollen-Bittle N, Pejhan S, Pasternak SH, Keene CD, Zhang Q, Whitehead SN. Co-registration of MALDI-MSI and histology demonstrates gangliosides co-localize with amyloid beta plaques in Alzheimer’s disease. Acta Neuropathol 2024; 147(1): 105

[229]

Zhang Q, Li Y, Sui P, Sun XH, Gao Y, Wang CY. MALDI mass spectrometry imaging discloses the decline of sulfoglycosphingolipid and glycerophosphoinositol species in the brain regions related to cognition in a mouse model of Alzheimer’s disease. Talanta 2024; 266(Pt 2): 125022

[230]

Michno W, Bowman A, Jha D, Minta K, Ge J, Koutarapu S, Zetterberg H, Blennow K, Lashley T, Heeren RMA, Hanrieder J. Spatial neurolipidomics at the single amyloid-β plaque level in postmortem human Alzheimer’s disease brain. ACS Chem Neurosci 2024; 15(4): 877–888

[231]

Liao T, Ren Z, Chai Z, Yuan M, Miao C, Li J, Chen Q, Li Z, Wang Z, Yi L, Ge S, Qian W, Shen L, Wang Z, Xiong W, Zhu H. A super-resolution strategy for mass spectrometry imaging via transfer learning. Nat Mach Intell 2023; 5(6): 656–668

[232]

Esselman AB, Patterson NH, Migas LG, Dufresne M, Djambazova KV, Colley ME, Van de Plas R, Spraggins JM. Microscopy-directed imaging mass spectrometry for rapid high spatial resolution molecular imaging of glomeruli. J Am Soc Mass Spectrom 2023; 34(7): 1305–1314

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (7430KB)

1804

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/